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Abstract. Transfer learning in Bayesian optimisation is a popular way to allevi-
ate “cold start” issue. However, most of the existing transfer learning algorithms
use overall function space similarity, not a more aligned similarity measure for
Bayesian optimisation based on the location of the optima. That makes these algo-
rithms fragile to noisy perturbations, and even simple scaling of function values.
In this paper, we propose a robust transfer learning based approach that transfer
knowledge of the optima using a consistent probabilistic framework. From the fi-
nite samples for both source and target, a distribution on the optima is computed
and then divergence between these distributions are used to compute similarities.
Based on the similarities a mixture distribution is constructed, which is then used
to build a new information-theoretic acquisition function in a manner similar to
Predictive Entropy Search (PES). The proposed approach also offers desirable
“no bias” transfer learning in the limit. Experiments on both synthetic functions
and a set of hyperparameter tuning tests clearly demonstrate the effectiveness of
our approach compared to the existing transfer learning methods.

1 Introduction

Experimental optimisation is a widely used technique in scientific studies and engineer-
ing design to find optimal solutions to a variety of problems via experimentation. In its
most common form it is used to seek globally optimal solutions of unknown black-box
functions, which are often expensive to evaluate. Bayesian optimisation offers a sample
efficient solution to these kinds of problems. For example, it has been used in the sci-
entific community for synthetic gene design [1], alloy optimisation [2] and fiber yield
optimisation [3]. In machine learning it is often used to find the optimal hyperparame-
ters for the learning algorithms and the optimisation routines [4]. Bayesian optimisation
requires a probabilistic model of the function that is being optimised. Gaussian process
is often a popular choice as the prior for the function model. Posterior computed based
on the existing observations is then used to build a computationally cheap acquisition
function to seek the next evaluation point. There are a variety of acquisition functions
such as Probability of Improvement [5], Expected Improvement [6], GP-Upper Confi-
dence Bound (UCB) [7], Predictive Entropy Search (PES) [8] etc. Nearly, all the acqui-
sition functions address the trade off between sampling the regions where the posterior
mean is high (exploitation) and sampling the regions where uncertainty is high (explo-
ration) [9]. The maximiser of the acquisition function offers the best chance of being



the optima. Since the acquisition functions are computationally cheap they admit stan-
dard global optimisation routines such as DIRECT [10]. Bayesian optimisation runs in
a loop with experiments sequentially being performed at the locations of the respective
acquisition functions optima until an acceptable solution is found or the iteration bud-
get is exhausted. However, the generic Bayesian optimisation approach is susceptible
to the “cold start” problem where it may recommend several points with low function
values before reaching a high function value region. For experiments which are highly
expensive, for example, hyperparameter tuning of a large deep network on a massive
training data that takes weeks to get trained on a many clusters of GPUs, the cost due
to “cold start” can be quite substantial, and we like to avoid that.

A principled approach to alleviate the “cold start” issue is to utilize the knowledge
acquired in any previous function (source) optimisations to achieve faster convergence
in the optimisation of a new related function (target) via transfer learning. State of the
art work include, [11], in which the authors assume high similarity in the rank-space
of function values and develop a model that transfers function ranking between source
and target. Similarly, [12] assumes high similarity between all the functions when their
mean functions are subtracted out. Both these methods do not model task to task relat-
edness, and are hence susceptible to negative transfer in the presence of a very differ-
ent source function. In [13], the authors assume that the task relationships are already
known and utilize the knowledge as per source target relationship in a multi-task setting.
In [14,15], the authors propose to compute overall similarity between functions based
on all the observations and [16,17] uses meta-features to compute similarities between
functions. Whilst the former can get tricked by scaling of the functions, the latter de-
pends crucially on the availability of right kind of meta-features. Most of them assume
function space similarity, instead of a more aligned similarity measure in terms of the
location of the optima, and hence may fail to find the global optima if the functions
have different scaling or relatedness between them. For this reason, a robust transfer
learning framework for Bayesian optimisation which transfer knowledge based only on
the proximity of the function optima is still an open problem.

In this paper, we propose a transfer learning framework for Bayesian optimisation
that performs knowledge transfer based on the location of the optima in the input space
and thus invariant to scaling and robust to noise in function. Since the location of global
optima is not known perfectly with finite observations (be it source or target), we use
probabilistic knowledge of the optima. Thompson sampling can be used to obtain the
optima distribution for both sources and the target. Following that we propose a novel
measure of relatedness by computing the divergence between these distributions. These
distributions are then merged into a mixture distribution based on the similarities and
is used to build the acquisition function. We use Predictive Entropy Search (PES) as a
vehicle to build our new acquisition function. Our method offers a “no bias” algorithm,
in a sense that in the limit (T →∞) the similarity to any random source tends to zero
with probability 1, making Bayesian optimisation for the target free from any source
induced bias in the limit. We validate our framework through application to optimisa-
tion of both synthetic functions and real world experiments. We compare our method
with three well known transfer learning methods as well as with the generic Bayesian
optimisation algorithm and demonstrate the superiority of our method.



2 Background

2.1 Gaussian Process

Gaussian process is an effective method for regression and classification problems and
has received considerable attention in machine learning community. It serves as a prob-
abilistic prior over smooth functions and is a generalization of infinite collection of
normally distributed random variables. A Gaussian process can be completely specified
by a mean function, µ(x) and covariance function, k(x,x

′
). Due to these properties,

we can model a smooth function as a draw from a Gaussian process. Formally,

f(x) ∼ GP(µ(x), k(x,x
′
)) (1)

where the function value at a point x, i.e. f(x) is a normal distribution and the relation
between the function values at any two points x and x

′
is modeled by covariance func-

tion k(x,x
′
). Without loss in generality, the mean function can be defined to be zero

thus making the Gaussian process fully specified by the covariance function [18,19].
Popular choices of covariance functions include squared exponential kernel, Matérn
kernel, linear kernel, etc. We assume the function measurements are noisy, i.e. observa-
tions yi = f(xi)+εi , where εi ∼ N (0, σ2) is the measurement noise. Collectively, we
denote the observations as Dn = {x1:n,y1:n}. The function values [f(x1), . . . , f(xn)]
follow a multivariate Gaussian distribution N (0,K), where

K =

 k(x1,x1) . . . k(x1,xn)
...

. . .
...

k(xn,x1) . . . k(xn,xn)

 (2)

Given a new point x, y1:n and f(x) are jointly Gaussian, then by the properties of
Gaussian process we can write[

y1:n

f(x)

]
∼ N

(
0,

[
K+ σ2I k

kT k(x,x)

])
(3)

where k = [k(x,x1) k(x,x2) . . . k(x,xn))]. Using Sherman-Morrison-Woodbury
formula [18] we can write the predictive distribution at any x as

p(y | Dn,x) = N (µn(x), σ
2
n(x)) (4)

where the predictive mean µn(x) is given as

µn(x) = kT
[
K+ σ2I

]−1
y1:n (5)

and the predictive variance σ2
n(x) is given as

σ2
n(x) = k(x,x)− kT

[
K+ σ2I

]−1
k. (6)



2.2 Bayesian Optimisation

Bayesian optimisation is an elegant approach for the global optimisation of expensive,
black-box functions. Given a small set of observations from previous function evalu-
ations, Bayesian optimisation proceeds by building a probabilistic model of the func-
tion generally using a Gaussian process (GP). However, other methods are also used
for function modeling, e.g. random forests and Bayesian neural networks [20,21]. The
model of the function is then combined with the existing observations to derive a pos-
terior distribution. This distribution is then used to construct a surrogate utility function
called acquisition function, which is cheap to evaluate and finally optimised to recom-
mend the next function evaluation point while keeping a trade-off between exploitation
and exploration [9,22].

Several popular acquisition functions are available in literature: Probability of im-
provement (PI), which takes into account the improvement in the probability over the
current best function value [5], Expected improvement (EI), which considers the ex-
pected improvement over the current best [6] and GP-UCB, which selects the evaluation
point based on the upper confidence bound [7]. These functions are based on predictive
mean and variance of the model posterior. An alternative acquisition function that max-
imizes the expected posterior information gain about the location of the global optima
over an input space grid is proposed in [23,24]. Another information-based acquisition
function called Predictive Entropy Search (PES) extended this approach to continuous
search spaces [8].

2.3 Transfer Learning for Bayesian Optimisation

Transfer learning methods in Bayesian optimisation utilize ancillary information ac-
quired from previous function (source) optimisations to achieve faster optimisation for
a new related function (target). The crucial requirement is to determine the source func-
tion which is highly similar to the target. Limited work exist for transfer learning in
Bayesian optimisation and most of them have made assumption regarding similarity
between the source and the target. For example, Bardenet et al. [11] proposed the first
work on transfer learning for Bayesian optimisation by transferring the source knowl-
edge via a ranking function, which was assumed to be applicable for the target func-
tion as well. Another similar approach proposed in [12] assumes that the deviations of
a function from its mean scaled through the standard deviation are transferable from
source to target. Both these methods have strong assumption regarding source-target
similarity and hence experience difficulty to find the global optima if among many
sources, some have different function shapes or different optima compared to the tar-
get. To handle any potential differences between the source and the target, an alternate
transfer learning framework was proposed by Joy et al. [14] modeling source data as
noisy observations of the target function. The noise envelope is estimated by taking dif-
ference between any available source/target data and can be used to distinguish a related
source from an unrelated one. Using the previous method as a base, Ramachandran et
al. [25] proposed another transfer learning method for Bayesian optimisation that se-
lect sources which are highly related to the target. The authors use multi-armed bandit
formulation for the selection of optimal sources. However, these methods would not be



able to leverage from a related source having its output scale different from that of the
target even though both source and target have their optima located at the same place.
Meta-learning approaches proposed in [16,17] can estimate source/target similarities,
however it requires meta features for source and target functions, which may not be
available in general.

3 Proposed Method

We propose a new information-theoretic transfer learning framework for Bayesian opti-
misation that utilizes data from source and target functions to maximize the information
about the global minima of the target function. We first discuss an information-theoretic
framework for Bayesian optimisation known as Predictive Entropy Search (PES) and
then present our proposed transfer learning model.

3.1 Optimisation of black-box functions using Predictive Entropy Search (PES)

Let f(x) be an expensive black-box function and we need to find its global minimizer
x∗ = argmax

x∈X
f(x) over some domain X ⊂ Rd. Let Dn = {(xi, yi)}ni=1 denote the

noisy observations from the function f(x) under the observation model yi = f(xi)+εi
where εi ∼ N (0, σ2) is the measurement noise. Predictive entropy search is an acqui-
sition function for Bayesian optimisation that recommends the next function evaluation
point with an aim to maximize the information about x∗, whose posterior distribution is
p(x∗ | Dn). The posterior distribution represents the likelihood of a location being the
function global minimum after observing Dn observations. The information about x∗
is measured in terms of the differential entropy between p(x∗ | Dn) and the expected
value of p (x∗ | Dn ∪ {(x, y)}). Formally, the PES acquisition function selects a point
xn+1 that maximizes the information about x∗ as

xn+1 = argmax
x∈X

αn(x) = H [p(x∗ | Dn)]− Ep(y|Dn,x) [H [p (x∗ | Dn ∪ {(x, y)})]]

(7)
where H [p(x)] = −

∫
p(x) log p(x)dx is the differential entropy and the expectation

is with respect to the posterior predictive distribution of y given x. Evaluation of the
acquisition function in (7) is intractable and requires discretisation [24]. Noting that
mutual information is a symmetric function, an easier yet equivalent formulation is as
below:

xn+1 = argmax
x∈X

αn(x) = H [p(y | Dn,x)]− Ep(x∗|Dn) [H [p (y | Dn,x,x∗)]] (8)

The first term in (8) involves the predictive distribution p(y | Dn,x), which is Gaussian
under Gaussian process modeling of f(x). Therefore, we have

H [p(y | Dn,x)] = 0.5 log
[
2πe

(
vn (x) + σ2

)]
where vn (x) is the variance of p(y | Dn,x) and σ2 is the variance due to measure-
ment noise. The second term involves p (y | Dn,x,x∗), which is the posterior dis-
tribution for y given the observed data Dn and the location of the global minimizer



Algorithm 1 Bayesian optimisation using PES as acquisition function
1. Input: Initial observations {(xi, yi)}n0

i=1

2. Output: {xn, yn}Tn=1

3. for n = n0, . . . , T do
(a) Draw M samples of x∗ from the posterior Gaussian process of the target function.
(b) Use x∗ samples to compute αn(x) and maximize it as in (9) to recommend a new point

xn.
(c) Evaluate the target function at xn: yn = f(xn) + εn where εn ∼ N

(
0, σ2

)
.

(d) Augment (xn, yn) to the target observations and update the posterior Gaussian process.
4. end for

of f . An exact form for the distribution p (y | Dn,x,x∗) is intractable and its en-
tropy H [p (y | Dn,x,x∗)] for a given x∗ sample is usually computed using expecta-
tion propagation [26]. The expected value of the entropy with respect to the distribution
p(x∗ | Dn) is approximated by averaging the entropy for Monte Carlo samples of
x∗. A well known approach called Thompson sampling is typically used to draw the
x∗ samples [27]. Using the estimated acquisition function, PES recommends the next
evaluation point by the following maximization

xn+1 = argmax
x∈X

αn(x) = 0.5 log
[
vn (x) + σ2

]
− 1

M

M∑
i=1

0.5 log
[
v(i)n

(
x | x(i)

∗

)
+ σ2

]
(9)

where M is the number of x∗ samples drawn, vn (x) and v(i)n
(
x | x(i)

∗

)
are the pre-

dictive variances given i-th sample of x∗. A pseudo-code for the Bayesian optimisation
using PES acquisition function is presented in Algorithm 1. For further details on PES,
we refer the reader to [8].

3.2 The Proposed Transfer Learning Method

Since the goal of the Bayesian optimisation is to find the optima (or minima) of a func-
tion, we develop a transfer learning method that directly transfers knowledge about the

location of global minima from source functions to the target. Let
{
{xsi , ysi }

Ns
i=1

}S
s=1

be

the observations from S sources under the observation model ysi = fs(xsi ) + εsi where
εsi ∼ N (0, σ2) and ps(x∗) be the global minima distribution of the global minimizer
x∗ from each source s. Similarly, let {xj , yj}n0

j=1 be the target observations under the
observation model yj = f(xj) + εj up to iteration n0, where εj ∼ N (0, σ2) and p(x∗)
be the global minima distribution of its global minimizer x∗. Our proposed transfer
learning scheme intervenes into the distribution of x∗ and modifies it to become a mix-
ture distribution of p(x∗) from the target and ps(x∗) from each source s. The proposed
mixture distribution can be formally written as

pTL(x∗) = π0p(x∗) + π1p
1(x∗) + . . .+ πSp

S(x∗) (10)



where π0, π1, . . . , πS are the mixture coefficients such that
∑S
s=0 πs = 1. Our model

sets these mixture coefficients in proportion to the similarity between the target and a
source. We first define a similarity measure ψs between the target p(x∗) and a source
ps(x∗). ψ0 is assumed to be the similarity of p(x∗) with itself and is set to 1. We define
π0, π1, . . . , πS as

πs =
ψs∑S
s=0 ψs

. (11)

Given the proposed mixture distribution pTL(x∗), our proposed information-theoretic
transfer learning maximizes the following acquisition function

xn+1 = argmax
x∈X

αn(x) = H [p(y | Dn,x)]− EpTL(x∗|Dn) [H [p (y | Dn,x,x∗)]] (12)

The entropies in the above equation are computed as in (9).

Source/Target Similarity Measure Given two probability distributions p(x∗) and
ps(x∗), we measure a divergence between p and ps using their Kullback-Leibler (KL)
divergence. KL-divergence takes non negative values and is unbounded. After mea-
suring the divergence (denoted as D(ps||p)), we map it to a similarity measure as
ψs = exp(−D(ps||p)

η ), where η > 0 is a model hyperparameter. Any other divergence
measures such Hellinger distance, total variation distance or χ2-divergence could also
be used [28].

Since we have access to only samples of x∗ and no direct access to the closed form
of the probability distributions p(x∗) and ps(x∗), we need to estimate these density
functions before computing the KL-divergence. A naive way to estimate probability
density is via histograms with uniform binning, however, this method quickly becomes
inefficient in the number of samples. To avoid this inefficiency, we estimate the KL-
divergence based on nearest neighbor (NN) distances [29,30], an approach that relies on
non-parametric density estimation and then uses it to compute the KL-divergence. We
refer to this estimate as NN-divergence. Let

{
xs,1∗ , . . . ,xs,n∗

}
and

{
x1
∗, . . . ,x

m
∗
}

be the
d-dimensional samples drawn from ps(x∗) and p(x∗) respectively. The NN divergence
is estimated as

Dn,m (ps(x∗) ‖ p(x∗)) =
d

n

n∑
i=1

log
τm(i)

ρn(i)
+ log

m

n− 1
(13)

where
τm(i) = min

j=1,...,m
‖ xs,i∗ − xj∗ ‖

is the distance of xs,i∗ to its nearest neighbor in the target sample set
{
x1
∗, . . . ,x

m
∗
}

and

ρn(i) = min
j=1,...,n,j 6=i

‖ xs,i∗ − xs,j∗ ‖

is the distance of xs,i∗ to its nearest neighbor within the source sample set
{
xs,1∗ , . . . ,xs,n∗

}
.
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Fig. 1: Evolution of pTL(x∗) samples with increasing iterations for a one-dimensional
target function (minimum at 0.3); (a) - (b) show histogram representation of ps(x∗) for
two one-dimensional source functions with minima at −0.7 and 0.4 respectively; (c)
shows the histogram representation of p(x∗) at the start of optimisation; (d) - (f) show
the histogram representation of pTL(x∗) at T = 1, 3, and 5 respectively. The contribu-
tion of the source farther from the target reduces quickly while that of the related source
increases.

Discussion Since the target does not have many observations available in the initial
iterations, the global minima samples from target, p(x∗) are distributed widely over
the domain X . Therefore the NN divergence of each source with the target will have
similar values and this in turn causes our transfer learning framework to choose almost
equal number of samples from each source in the initial iterations. As the iterations
increase, the NN divergence estimate improves as more target observations are made.
This increases the contribution of related sources and decreases the contribution of un-
related sources in the mixture distribution pTL(x∗). Asymptotically, the contribution of
the ps(x∗) distribution from an unrelated source becomes zero. This makes our transfer
learning algorithm capable of preventing negative transfer from unrelated sources. In
the limit when our algorithm has densely sampled the target function, p(x∗) becomes
nearly an impulse function and its KL-divergence with any source becomes extremely



Algorithm 2 The Proposed Transfer Learning Algorithm

1. Input: Source observations:
{
{xs

i , y
s
i }Ns

i=1

}S

s=1
under the model ysi = fs(xs

i ) + εsi ,
Initial target observations: {xj , yj}n0

j=1 under the model yj = f(xj) + εj .
2. Output: {xn, yn}Tn=1.
3. Draw M samples of x∗ from the posterior Gaussian process of each source. Denote them as
{xs,(i)

∗ }Mi=1 for s-th source.
4. for n = n0, . . . , T do

(a) Draw M samples of x∗ from the posterior Gaussian process of the target function.
Denote them as {x(i)

∗ }Mi=1.
(b) Compute the NN-divergenceD(ps||p) between s-th source and the target using samples
{xs,(i)

∗ }Mi=1and {x(i)
∗ }Mi=1 as in (13). Next compute πs using (11).

(c) Draw x∗ samples from pTL(x∗) by re-sampling {x(i)
∗ }Mi=1 and {xs,(i)

∗ }Mi=1 in the pro-
portion of π0, π1, . . . , πS .

(d) Use x∗ samples to compute αn(x) and maximize it as in (12) to recommend a new
point xn.

(e) Evaluate the target function at xn: yn = f(xn) + εn where εn ∼ N
(
0, σ2

)
.

(f) Augment (xn, yn) to the target observations and update the posterior Gaussian process.
5. end for

large implying that pTL(x∗) → p(x∗) and becomes free of any bias from the sources.
Figure 1 provides an illustration of the evolution of the mixture distribution pTL(x∗).
We can see that the contribution of unrelated source reduces quickly whilst that of the
related source increases. We considered two source functions as:

f(x) = 1− a ∗ exp
(
−1

2
(x− µ)(x− µ)T

)
For source 1, µ = −0.7, a = 2 and for source 2, µ = 0.4, a = 2 . The target function
has a similar form with µ = 0.3, a = 1. For each source, 20 data points are sampled ran-
domly from the support [−1.5, 1.5] and ps(x∗) samples are drawn using their posterior
Gaussian process models. Figures (1a) and (1b) show the histogram counts of source
ps(x∗) samples. We also show the histogram count of p(x∗) samples drawn using the
posterior Gaussian process models of initial target data (see Figure (1c)). Figures (1d) -
(1f) show the evolution of pTL(x∗) with increasing iterations. Initially pTL(x∗) samples
are widely distributed. With increasing iterations, the mass of pTL(x∗) samples near
the global minima location increases as it selects more samples from the closer source
(minimum at 0.4). This example illustrates the typical behavior of our transfer learning
algorithm in relying more on related sources.

Our proposed information-theoretic transfer learning algorithm for Bayesian opti-
misation is summarized in Algorithm 2.

4 Experiments

We perform experiments using both synthetic and real optimisation tasks. Through syn-
thetic experiments, we analyze the behavior of our proposed transfer learning method



in a controlled setting. Through real data experiments, we show that our method can
tune the hyperparameter for support vector machine and elastic net efficiently. For both
synthetic and real experiments, we compare our proposed method with three other well
known transfer learning methods and with Bayesian optimisation that does not use any
knowledge from sources. The following baselines are used:

– Env-GP: This algorithm [14] models a source function as noisy measurements of
the target function. The noise for each source is estimated separately and then the
observations from each source are merged.

– SMBO: This algorithm [12] transfers deviation of a function from its mean scaled
through the standard deviation. The observations from each source are first stan-
dardized and then data from all sources are merged.

– SCoT: This algorithm [11] transfers function ranking from a source to the target
in latent space. The observations from each source are first adjusted and then data
from all sources are merged.

– Generic-BO (No Transfer): This baseline is a PES based Bayesian optimisation
algorithm (see Algorithm 1) and does not use any information from source func-
tions. This is used to assess the gain in optimisation performance due to transfer
learning.

4.1 Experimental setting

We use the square-exponential kernel as the covariance function in Gaussian process
(GP) modeling. All GP hyperparameters are estimated using maximum a posteriori
(MAP) estimation. In all our experiments, the hyperparameter η (used in similarity
measure) is set to 10. All the results are averaged over 10 runs with random initializa-
tions.

4.2 Synthetic Experiments

We consider 4 source functions as:

f(x) = 1− a ∗ exp
(
−1

2
(x− µ)(x− µ)T

)
For source 1, µ = [−1.8,−1.8,−1.8], a = 2. For source 2, µ = [−0.7,−0.7,−0.7],
a = 2. For source 3, µ = [0.4, 0.4, 0.4], a = 2. For source 4, µ = [1.5, 1.5, 1.5] ,
a = 2. The target function has a similar form with µ = [0.3, 0.3, 0.3], a = 1. For each
source, 50 data points were sampled randomly from [−2, 2] along each dimension. Our
transfer learning method selects pTL(x∗) samples from any of the four sources based on
the estimated source/target similarity. Figure 2a shows the minimum function value ob-
tained with respect to iterations for the proposed method and the baselines. Each method
starts with the same four random observations. Our method outperforms the baselines
by achieving 95% of the minimum value in the 8th iteration. The performance of Env-
GP method is poor because it estimates source and target similarity by measuring the
difference between the source and the target functions, not their optima location. The
other two transfer learning baselines also show poor performance as some of the sources



are not similar to the target. Figure2b shows the mixture proportions of sources and the
target distribution with respect to increasing iterations. As seen from the Figure, the
source with minima at [0.4, 0.4, 0.4] contributes maximally in the mixture distribu-
tion. As the iterations increase, the contribution of sources with distant minimum (from
target’s minimum) reduces to small values.
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Fig. 2: Synthetic Experiments: (a) Minimum value vs optimisation iterations (b) Pro-
portions of various sources and the target in the mixture distribution with respect to
optimisation iterations.

4.3 Hyperparameter Tuning

We tune hyperparameters of two classification algorithms: Support Vector Machine
(SVM) and Elastic net. We consider 5 binary classification datasets - ‘banana’, ‘breast
cancer’, ‘colon cancer’ , ‘german numer’ and ‘diabetes’ (LibSVM repository [31]). A
brief summary about these datasets is provided in Table 1. We train a classifier for each
dataset. For each dataset, 70% data is chosen randomly for training and the rest 30%
used for validation. Hyperparameter tuning involves optimising validation performance
(measured via AUC) as a function of hyperparameter values. We consider the first 4 hy-
perparameter tuning functions (‘banana’, ‘breast cancer’, ‘colon cancer’ and ‘german
numer’ ) as source functions and the hyperparameter tuning function of the ‘diabetes’
as the target function. We assume that the several samples from the source functions are
already available.

SVM with RBF kernel has two hyperparameters to tune: cost parameter (C) and ker-
nel parameter (γ). The range for γ is set as

[
10−3, 103

]
and the same for C is

[
2−3, 23

]
.

We run our proposed method and other baseline methods and report the results in Figure
3. Figure 3a shows the AUC performance on the held-out validation set. The baseline,
Generic-BO (No Transfer) shows better performance than other three transfer learn-
ing baselines. In contrast, the proposed method is able to outperform Generic-BO (No
Transfer) converging faster than all the baselines. Figure 3b shows the proportion of
contributions from different sources versus iterations.



Dataset Number of data points Number of features
Diabetes 768 8
Banana 5300 2

Breast Cancer 683 10
Colon Cancer 62 2000

German Numer 1000 24
Table 1: Binary datasets used in our experiments.
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Fig. 3: Hyperparameter tuning (SVM): (a) AUC vs optimisation iterations (b) Propor-
tions of sources and the target in the mixture distribution with respect to optimisation
iterations.
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Fig. 4: Hyperparameter tuning (Elastic net): (a) AUC vs optimisation iterations (b) Pro-
portions of sources and the target in the mixture distribution with respect to optimisation
iterations.



Elastic net has two hyperparameters to tune: L1 and L2 penalty weights. The ranges
for both these hyperparameters are set as

[
10−2, 100

]
. The performance in terms of

AUC on the held-out validation set is shown in Figure 4a. Our method performs sig-
nificantly better than all the baselines. A plot depicting the proportions of contributions
from different sources versus iterations is shown in Figure 4b. The source code used for
all these experiments are available at https://github.com/AnilRamachandran/ITTLBO.git
and the datasets are available at https://doi.org/10.7910/DVN/LRNLZV.

5 Conclusion

We propose a novel information-theoretic transfer learning algorithm for Bayesian op-
timisation. Our algorithm is based on constructing a mixture distribution of optima
from both sources and the target combining them by the divergence between the optima
distributions. This biased distributions is then used to formulate a new information the-
oretic acquisition function in a manner similar to the Predictive Entropy Search. In the
limit (T →∞) the optimisation becomes free from any random sources influence with
probability 1. We evaluate our algorithm with diverse optimisation tasks and show that
it outperforms other well known transfer learning methods.

The framework proposed in this paper is the first attempt to build a novel information-
theoretic transfer learning framework for Bayesian optimisation. There are several pos-
sibilities for applying this idea in other related frameworks such as optimal sensor place-
ments in monitoring systems [32], optimal experimental design for reservoir forecasting
[33] and automatic emulator constructor for radiative transfer models (RTMs) [34].
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