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Abstract. The problem of automatic identification of physical activities
performed by human subjects is referred to as Human Activity Recog-
nition (HAR). There exist several techniques to measure motion char-
acteristics during these physical activities, such as Inertial Measurement
Units (IMUs). IMUs have a cornerstone position in this context, and are
characterized by usage flexibility, low cost, and reduced privacy impact.
With the use of inertial sensors, it is possible to sample some measures
such as acceleration and angular velocity of a body, and use them to
learn models that are capable of correctly classifying activities to their
corresponding classes. In this paper, we propose to use Convolutional
Neural Networks (CNNs) to classify human activities. Our models use
raw data obtained from a set of inertial sensors. We explore several com-
binations of activities and sensors, showing how motion signals can be
adapted to be fed into CNNs by using different network architectures.
We also compare the performance of different groups of sensors, inves-
tigating the classification potential of single, double and triple sensor
systems. The experimental results obtained on a dataset of 16 lower-
limb activities, collected from a group of participants with the use of five
different sensors, are very promising.

Keywords: human activity recognition · cnn · deep learning · classifi-
cation · imu

1 Introduction

Human activity recognition (HAR) is a well-known research topic, that involves
the correct identification of different activities, sampled in a number of ways. In
particular, sensor-based HAR makes use of inertial sensors, such as accelerom-
eters and gyroscopes, to sample acceleration and angular velocity of a body.
Sensor-based techniques are generally considered superior when compared with
other methods, such as vision-based, which use cameras and microphones to
record the movements of a body: they are not intrusive for the users, as they
do not involve video recording in private and domestic context, less sensitive to
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environmental noise, cheap and efficient in terms of power consumption [8, 13].
Moreover, the wide diffusion of embedded sensors in smartphones makes these
devices ubiquitous.

One of the main challenges in sensor-based HAR is the information rep-
resentation. Traditional classification methods are based on features that are
engineered and extracted from the kinetic signals. However, these features are
mainly picked on a heuristic base, in accordance with the task at hand. Often, the
feature extraction process requires a deep knowledge of the application domain,
or human experience, and still results in shallow features only [5]. Moreover,
typical HAR methods do not scale for complex motion patterns, and in most
cases do not perform well on dynamic data, that is, data picked from continuous
streams.

On this regard, automatic and deep methods are gaining momentum in the
field of HAR. With the adoption of data-driven approaches for signal classifica-
tion, the process of selecting meaningful features from the data is deferred to the
learning model. In particular, CNNs have the ability to detect both spatial and
temporal dependencies among signals, and can effectively model scale invariant
features [15].

In this paper, we apply convolutional neural networks for the HAR problem.
The dataset we collected is composed of 16 activities from the Otago exercise
program [12]. We train several CNNs with signals coming from different sen-
sors, and we compare the results in order to detect the most informative sensor
placement for lower-limb activities. Our findings show that, in most scenarios,
the performance of a single sensor is comparable to the performance of multi-
ple sensors, but the usage of multiple sensor configurations yields slightly better
results. This suggests that collinearities exist among the signals sampled with
sensors on different placements.

The rest of the paper is organized as follows: Section 2 gives a brief overview
of the state of the art of deep learning models for activity recognition. Section 3
presents our dataset, the architecture of our neural network, and the methodol-
ogy adopted in this study. The experimental results are discussed in Section 4.
Some concluding remarks and future extensions for this study are provided in
Section 5.

2 Related works

Extensive literature has been produced about sensor-based activity recognition.
Bulling et al. [6] give a broad introduction to the problem, highlighting the ca-
pabilities and limitations of the classification models based on static and shallow
features. Alsheikh et al. [2] introduce a first approach to HAR based on deep
learning models. They generate a spectrogram image from an inertial signal,
in order to feed real images to a convolutional neural network. This approach
overcomes the need for reshaping the signals in a suitable format for a CNN,
however, the spectrogram generation step simply replaces the process of feature
extraction, adding initial overhead to the network training. Zeng et al. [15] use
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raw acceleration signals as input for a convolutional network, applying 1-D con-
volution to each signal component. This approach may result in loss of spatial
dependencies among different components of the same sensor. They focus on
public datasets, obtained mainly from embedded sensors (like smartphones), or
worn sensors placed on the arm. A similar technique is suggested by Yang et
al. [14]. In their work, they use the same public datasets, however, they apply
2-D convolution over a single-channel representation of the kinetic signals. This
particular application of CNNs for the activity recognition problem is further
elaborated by Ha et al. [10], with a multi-channel convolutional network that
leverages both acceleration and angular velocity signals to classify daily activi-
ties from a public dataset of upper-limb movements. The classification task they
perform is personalized, so the signals gathered from each participant are used
to train individual learning models.

One of the missing elements in all the previously described contributions
about deep learning models is a comparison of the classification performance of
individual sensors or group of sensors. Our aim in this paper is to implement a
deep CNN that can properly address the task of activity recognition, and then
compare the results obtained with the adoption of different sensor combinations.
We also focus on a set of exercise activities that are part of the Otago exercise
program. To the best of our knowledge, this group of activities has never been
explored before in the context of activity recognition.

3 Data and methodology

The purpose of this paper is to assess the classification performance of different
groups of IMU sensors for different activities. We group the target activities into
four categories, and, for each category, we aim at identifying the best placement
for the inertial units, as well as the most efficient combination of sensors, with
respect to the activity classification task.

3.1 Sensors and data acquisition

Five sensors were used for the data collection phase. Each sensor is held in place
by a neoprene sleeve. For this study, we set the placement points as follows:

– two sensors placed on the distal third of each shank (left and right), superior
to the lateral malleolus;

– two sensors centered on both left and right feet, in line with the head of the
fifth metatarsal;

– one sensor placed on the lumbar region, at the fourth lumbar vertebrae.

We explore three main sensor configurations: with a single device setup, we
classify the activity signal coming from each individual sensor. In the double
device setup, four combinations of two sensors are tested: shin sensors (right
and left), foot sensors (right and left), right sensors and left sensors (foot and
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Fig. 1: This acceleration x components correspond to roughly 10 seconds of activ-
ity, acquired with the five sensors used in this study. Signals sampled by different
sensors may show very discordant patterns and characteristics.

shin). When testing the triple device setups, the lumbar sensor is included in
each one of the double sensor configurations.

The chosen device for this study is Shimmer3 [7]. The Shimmer3 IMU con-
tains a wide set of kinetic sensors, but we are interested in sampling acceleration
and angular velocity only. Both these quantities are captured by triaxial sensors,
so each Shimmer3 device returns a set of six signals (three acceleration compo-
nents, over the axes x, y and z, and three angular velocity components, over the
same axes). The sampling rate is set to 102.4 Hz for all sensors. The accelerome-
ter is configured to have a range of ±2g, while the gyroscope range is set to 500
dps. We adopted this particular configuration in order to avoid aliasing when
sampling the target activities, as gait-related human motion usually locates in
the frequency range of 0.6-5.0 Hz [9].

3.2 Target activities and population

The physical activities targeted in this paper are part of the Otago Exercise Pro-
gramme (OEP), a programme of activities designed to reduce the risk of falling
among the elderlies [12]. In particular, we grouped 16 different activities into
four categories: walk, walking balance, standing balance, and strength.
None of the Otago warm up activities is included in this study.

Walk : it is composed of backwards walking (bawk), sideways walking (sdwk),
walking and turning around (wktrn). These three activities have all wide
and diverse range of movements, especially for the foot sensors.

Walking Balance : it is composed of heel to toe walking backwards (het-
owkbk), heel walking (hewk), tandem walking (tdwk), toe walking (towk).
These activities are based on similar ranges of movements.
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Standing Balance : it is composed of single leg stance (sls), and tandem stance
(tdst). The signals sampled from these two activities are mainly flat, as they
require the subject to move only once in order to change the standing leg
from left to right.

Strength : it is composed of knee extension (knex), knee flextion (knfx), hip
abduction (hpabd), calf raise (cars), toe raise (tors), knee bend (knbn), and
sit to stand (std). As some of these activities are performed by using each
individual leg separately, all the sensor configurations involving both right
and left sides are not applicable for this group.

A standard operating procedure defines the execution setup for all the target
activities, in terms of holding and pausing times, overall duration, starting and
ending body configurations. The same operating procedure is applied to all the
subjects involved in the study.

The group of 19 participants consists of 7 males and 12 females. Participants
have a mean age of 22.94±2.39, a mean height of 164.34±7.07 cm, and a mean
weight of 66.78±11.92 kg.

3.3 Dataset

Once the signal is acquired from the activity, it is segmented into small overlap-
ping windows of 204 points, corresponding to roughly 2 seconds of movements,
with a stride of 5 points. A reduced size of the windows is generally associated
with a better classification performance [3], and in the context of CNNs, it facili-
tates the training process as the network input has a contained shape. Therefore,
each window comes in the form of a matrix of values, of shape 6N × 204, where
N is the number of sensors used to sample the window. The dense overlapping
among windows guarantees high numerosity of training and testing samples. As
the activities have different execution times, and different subjects may execute
the same activity at different paces, the resulting dataset is not balanced. The
distributions of the example windows over the activity classes for the five target
groups are listed in table 1.

For assessing the performance of our classification system, we use a classic 5-
fold cross-validation approach. We partition the available datasets based on the
subjects rather than on the windows. This prevents overfitting over the subjects,
and helps to achieve better generalisation results. In this regard, 4 participants
out of 19 are always kept isolated for testing purposes, so each fold is generated
with an 80/20 split.

3.4 Input adaptation and network architecture

The shape of the input examples that is fed to the network depends on the sensor
configuration, as each sensor samples 6 signal components that are then arranged
into a 6 × 204 single-channel, image-like matrix, as described in Section 3.3.
Therefore, the input of the network has shape 6×204×N , where N is the number
of channels and is equal to the number of sensors used for the sampling. This
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Table 1: Label distributions for the activity groups

activity windows percentage activity group total

bawk 19204 39.88
walk 48143sdwk 22077 45.85

wktrn 6925 14.38

hetowkbk 4130 9.44

walk balance 43754
hewk 17796 40.67
tdwk 4578 10.46
towk 17250 39.42

sls 20006 65.05
stand balance 30759

tdst 10753 34.95

knex 7500 12.14

strength 76854

knfx 6398 10.42
hpabd 5954 9.62
cars 6188 10.11
tors 5815 9.41
knbn 26452 34.42
sts 8533 13.86

input adaptation is known as model-driven [13], and it is effective in detecting
both spatial and temporal features among the signal components [10]. Figure 2
shows how the signal components are stacked together and form the input image
for the network.

Acceleration 
components

Angular velocity 
components

204 points

Padding dimension

Fig. 2: The signal components are stacked on top of each other to form a bidi-
mensional matrix of values. Additional sensors would generate new channels of
the same shape.

The full structure of our convolutional model is shown in Figure 3. After the
input layer, three convolutional layers interleave with three max pooling layers.
The depthwise convolution operation generates multiple feature maps for every
input channel, with kernels of size 3× 5, 2× 4 and 2× 2 in the first, second and
third convolutional layer respectively. The input of every convolutional layer is
properly padded so that no loss of resolution is determined from the convolution
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operation. Batch normalization is applied after each convolutional layer. The
three max pooling layers use kernels of size 3 × 3, 2 × 2 and 3 × 2 respectively.
A fully connected network follows, composed by three dense layers of 500, 250
and 125 units. The dense layers are regularized with dropout during the train-
ing phase, with a 0.5 probability of keeping each neuron. The ReLU function
is used as activation function within the whole network, while the loss is calcu-
lated with the cross entropy function. The Adam optimizer is used as stochastic
optimization method [11]. The output layer is composed ok m units, where m
corresponds to the number of activities in each group. The softmax function will
return the most likely class of the input windows in the multi-class classification
task.

Input Layer
6 x 204 x N

Depthwise conv2d
[ 3, 5 ]

Multiplier 10

Max Pooling
[ 1, 3, 3, 1 ]

Stride [1, 1, 1, 1]

6 x 204 x 10N

4 x 202 x 10N

Depthwise conv2d
[ 2, 4 ]

Multiplier 2

4 x 202 x 20N

Max Pooling
[ 1, 2, 2, 1 ]

Stride [1, 1, 1, 1]

3 x 201 x 20N

Depthwise conv2d
[ 2, 2 ]

Multiplier 2

3 x 201 x 40N

Max Pooling
[ 1, 3, 2, 1 ]

Stride [ 1, 1, 2, 1 ]

1 x 100 x 40N

FCN

Fig. 3: Our CNN architecture, where N represents the number of sensors used
during the activity sampling. Regardless the value of N, the network structure
does not change, as depthwise convolution applies different filters to each one of
the input channels.

We select a set of hyperparameters that are kept constant for all the activity
groups and sensor configurations, based on literature best practices [4] and em-
pirical observations. We use a batch size of 1024, as we find this value to speed up
the learning process when compared with smaller sizes, without being computa-
tionally too complex to manage. The number of training epochs varies from 150
to up to 300, according to the behavior of individual configurations. The initial
learning rate is fixed to 0.005. The network is implemented with the TensorFlow
framework [1], version 1.7. Our objective is not to build the most performant
network for the task, but it is rather to compare the classification potential of
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different sensors. The rationale behind out architectural choices relies therefore
on a rather standard network configuration, based on small kernels, standard
regularization methods, and a compact set of hyperparameters. In our experi-
ence, three convolutional layers will lead to overfitting when no regularization
method is applied. However, introducing dropout stabilizes the learning, and the
network performance does not benefit from the inclusion of further convolutional
or dense layers.

4 Experimental results

In order to evaluate our classifier, we collect individual precision and recall scores
for every combination of sensors and activities, and we then compute the F-
scores. A synoptic overview of the results is presented in Figure 4.

In the results shown in Figure 4, the sensor combinations lay on the x axis.
Starting from the left, there are right foot (RF), left foot (LF), right shin (RS),
left shin (LS), lumbar (LM), and all the other target setups (for instance, the
triple setup on the right side is indicated by RSRFLM, that is, right shin, right
foot, lumbar). The activities are arranged on the y axis. Activity and sensor
groups are indicated by the black grid of horizontal and vertical lines. Each
tile in the picture contains the F-score obtained for the corresponding activity
and sensor configuration. The color gradient of the tiles corresponds to the F-
scores, and helps identifying high level performance for activity groups or sensor
configurations.

The vertical strip of tiles corresponding to the lumbar sensor (LM) clearly
shows that this single sensor does not hold any significant discriminating power,
nor it adds meaningful information when included in the triple sensor group,
shown in the rightmost region of the picture. Overall, a strong pattern on the
sensor configurations does not appear to emerge: the units placed on the feet
show very similar results to the units placed on the shins, without clear distinc-
tion in terms of discriminating power.

The confusion matrices resulting from the evaluation process over the test
datasets are shown in Figures 5, 6, 7 and 8, for the walk group, the walking
balance group, the standing balance group, and the strength group respectively.
The color gradient for each matrix is normalized on the rows.

The walk group scores interesting results for every sensor configuration. Sin-
gle sensors perform slightly worse than multiple sensor setups, however, there
seems to be no difference between two sensors and three sensors. From the con-
fusion matrix in Figure 5, we observe that the two majority classes, bawk and
sdwk, determined a reasonably limited amount of misclassified instances, while
the minority class, wktrn, only recorded 4% of false negatives.

The same behavior is shown for the walking balance group. In this case, the
hetowk and tdwk activities, which represent the 9.44% and 10.46% of the entire
group dataset respectively, performed remarkably well. For the first activity, only
3% of the instances were incorrectly classified, while the proportion of misclassi-
fication for the second activity is 8%. The confusion matrix in Figure 6 indicates
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Fig. 4: F-scores for the sensor configurations applied to the activity groups.
Empty tiles for the strength group correspond to regions where particular sensor
configurations were not applicable (asymmetric activities cannot be classified by
using sensors on both the right and the left sides at the same time). The color
scheme spans from dark tones of black for low values of F-score, to lighter tones
for high F-score values. Lighter tiles denote better results than darker tiles. In
order to emphasize small differences in the matrix, the minimum value for the
tile color gradient is set to be 0.4 (approximatively 0.1 higher than the smallest
F-score value), so scores below this value will be marked with a black tile.
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Fig. 5: Confusion matrix for the walk group. The left shin sensor was used.
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Fig. 6: Confusion matrix for the walking balance group. The combination of right
shin and right foot was used.

that the towk and hewk labels, the majority classes, got a rate of false positives
of 5% and 17% respectively, in favor of one each other. From the global confu-
sion matrix in Figure 4, these two classes correspond to slightly darker bands
within the activity group. As defined in the exercise program, heel walking and
toe walking present some similarities.
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Fig. 7: Confusion matrix for the standing balance group. The combination of
right shin and right foot was used.

The standing balance group, whose confusion matrix is reported in Figure
7, was not properly classified with a single sensor. The heavy class imbalance,
in conjunction with the monotonicity of the signals sampled from these two
activities, skewed most of the misclassified instances towards the majority class,
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sls, as indicated from the confusion matrix in Figure 7. Nonetheless, the F-scores
indicate that symmetric combinations of sensors (right and left foot, right and
left shin) were able to discriminate between the two better than the asymmetric
ones (right side, left side).
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Fig. 8: Confusion matrix for the strength group. The combination of left shin,
left foot and lumbar sensors was used.

As for the strength group, multiple sensor configurations increased the clas-
sification score remarkably when compared with single sensor configurations, in
some cases reaching perfect classification for classes such as hpabd, cars or knfx.
The two classes that lowered the overall group performance are knbn and sts, as
shown in Figure 8. They are based on very similar movements, so weak values
of precision and recall are somehow expected.

5 Conclusions and Future works

In this paper, we presented a CNN model for the HAR problem. We focused on
a set of activities extracted from a common exercise program for fall prevention,
training our model data sampled from different sensors, in order to explore the
classification capabilities of each individual unit, as well as groups of units. Our
experimental results indicate that convolutional models can be used to address
the problem of activity recognition in the context of exercise programs. In most
cases, combinations of two or three sensors lead to better results compared to
the adoption of single inertial units.

Further work on the application of convolutional model to real-world data is
recommended. More activities could be included in the workflow, and different
aggregations on the activities can be tested. In particular, it is recommended
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to diversify the population of participants, in order to validate the classification
mechanism to wider age groups. A proper campaign of hyperparameter tuning
should be carried over the same set of activities and inertial units, in order to
boost the classification performance and reduce the complexity of both the train-
ing and inference phases. The very same network structure could be redesigned
in an optimized fashion for the task at hand, with particular emphasis on the
input adaptation step. As example, shaping the input in a single 6N ×204 could
lead to interesting results, as more complex kernels would allow the inclusion of
features involving multiple sensors.
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