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Abstract. Patients with sports-related injuries need to learn to perform
rehabilitative exercises with correct movement patterns. Unfortunately,
the feedback a physiotherapist can provide is limited by the number
of physical therapy appointments. We study the feasibility of a system
that automatically provides feedback on correct movement patterns to
patients using a Microsoft Kinect camera and Machine Learning tech-
niques. We discuss several challenges related to the Kinect’s proprietary
software, the Kinect data’s heterogeneity, and the Kinect data’s tempo-
ral component. We introduce AMIE, a machine learning pipeline that
detects the exercise being performed, the exercise’s correctness, and if
applicable, the mistake that was made. To evaluate AMIE, ten partic-
ipants were instructed to perform three types of typical rehabilitation
exercises (squats, forward lunges and side lunges) demonstrating both
correct movement patterns and frequent types of mistakes, while being
recorded with a Kinect. AMIE detects the type of exercise almost per-
fectly with 99% accuracy and the type of mistake with 73% accuracy.

1 Introduction

Being active is crucial to a healthy lifestyle. Initiatives such as Start to Run [3]
in Belgium and Let’s Move in the USA [28] encourage people to become more
active. These initiatives are paying off, as in the USA, almost every generation
is becoming more active, according to a report made by the Physical Activ-
ity Council [9]. However, this increase in activity inevitably also leads to an
increase in sports-related injuries [24, 12]. Besides the short and long term phys-
ical discomforts, there are substantial costs associated with injuries. A significant
portion of these costs are allocated to rehabilitation [13, 18]. People with injuries
usually need to visit a physiotherapist. The physiotherapist will then prescribe a
program of rehabilitation exercises that the injured patient must follow at home.

This current rehabilitation paradigm has several drawbacks. First, due to
time constraints of the patients, and the cost of physiotherapy sessions, the in-
teraction between the patient and physiotherapist is necessarily limited. Second,
many patients simply do not do their exercises [4], with research reporting ad-
herence rates to home exercise programs of only 15-40% [5, 15]. Third, it is hard
for a patient to learn how to correctly perform the exercise due to the limited
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feedback by a physical therapist. These drawbacks can cause problems such as
prolonged recovery time, medical complications, and increased costs of care [22].

One possible way to address these drawbacks is to exploit technological ad-
vances to develop an automated system to monitor exercises performed at home.
Patients have expressed a willingness to use such a system because it allows them
to perform exercises in the comfort of their own home while having fast access
to feedback [19]. Such a home monitoring system could provide three important
benefits, by:

1. Motivating the patient to do his exercises;
2. Showing the patient the correct movement patterns for his exercises; and
3. Monitoring the quality of the performed exercises and giving feedback in

case an exercise is poorly executed.

Currently, most effort has been devoted towards addressing the first two
tasks. First, researchers have shown that home-systems can successfully moti-
vate patients to adhere to their home exercise programs by applying tools such
as gamification and social media [27, 17, 14]. Second, several approaches have
demonstrated the ability to show the correct movement patterns of exercises in
a clear way such that people are able to understand and reproduce these move-
ment patterns [19, 7, 25]. There has been less work on the third task: monitoring
the correctness of exercises. The current approaches typically make unrealistic
assumptions such as the availability of perfect tracking data [26], fail to describe
how the system determines if an exercise is performed correctly [7, 15], or do not
quantitatively evaluate their systems [1, 10, 26, 30, 29].

In this paper, we propose AMIE (Automatic Monitoring of Indoor Exer-
cises), a machine learning pipeline that uses the Microsoft Kinect 3D camera
to monitor and assess the correctness of physiotherapy exercise performed by
a patient independently in his home. At a high-level, AMIE works as follows.
First, it identifies an individual repetition of an exercise from the Kinect’s data
that tracks the absolute location of multiple joints over time. Second, in order
to capture the movement of the patient, AMIE rerepresents the time-series data
for an exercise with a set of simple statistical features about the angles between
interconnected joints. Finally, it detects an exercise’s type, correctness, and, if
applicable, mistake type. We evaluated AMIE on a data set of 1790 exercise rep-
etitions comprising ten different test subjects performing three commonly used
rehabilitation exercises (i.e., squat, forward lunge and side lunge). AMIE detects
what exercise is being performed with 99.0% accuracy. In terms of predicting
the correctness of an exercise and which mistake was made, AMIE achieves ac-
curacies of 73.4% and 73.8% respectively.

To summarize, this paper makes the following contributions:

1. Details the data collected in this study comprehensively;
2. Discusses a number of challenges related to representing the Kinect data;
3. Describes the entire pipeline for classifying exercises correctly, including how

to automatically detect an individual exercise repetition and how to predict
if an exercise is performed correctly;
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4. Assesses AMIE’s ability to (a) detect the exercise being performed, (b) de-
termine if the exercise was performed correctly, and (c) identify the type of
mistake that was made; and

5. Releases both the collected data set and the source code of AMIE at http://
dtai.cs.kuleuven.be/software/amie, as a resource to the research com-
munity.

2 Data collection

We describe the characteristics of the subjects who participated in this study
and the collected data.

2.1 Subjects

Data of 7 male and 3 female subjects (26.7 ± 3.95 years, 1.76 ± 0.12 m , 73.5
± 13.3 kg, 23.38 ± 2.61 BMI) were collected. All subjects were free of injuries
and cardiovascular, pulmonary and neurological conditions that impeded the
ability to perform daily activities or physical therapy exercises. The study was
conducted according to the requirements of the Declaration of Helsinki and was
approved by the KU Leuven ethics committee (file number: s59354).

2.2 Exercises

The subjects were instructed to perform three types of exercises, which are
illustrated in Figure 1:

Squat The subject stands with his feet slightly wider than hip-width apart,
back straight, shoulders down, toes pointed slightly out. Keeping his back
straight, the subject lowers his body down and back as if the subject is
sitting down into a chair, until his thighs are parallel to the ground (or as
close as parallel as possible). Next, the subjects rises back up slowly.

Forward lunge The subject stands with his feet shoulder’s width apart, his
back long and straight, his shoulders back and his gaze forward. Next, the
subject steps forward with his left (or right) leg into a wide stance (about one
leg’s distance between feet) while maintaining back alignment. The subject
lowers his hips until his forward knee is bent at approximately a 90 degree
angle. Keeping his weight on his heels, the subject pushes back up to his
starting position.

Side lunge The subject stands with his feet shoulder’s width apart, his back
long and straight, his shoulders back and his gaze forward. Next, the subject
steps sideways with his right leg into a wide stance while maintaining back
alignment. Keeping his weight on his heels, the subject pushes back up to
his starting position.
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(a) (b) (c)

Fig. 1. Stick figures recorded by the Kinect of a person doing (a) a squat, (b) a forward
lunge and (c) a side lunge.

2.3 Mistake types

In addition to correct repetitions of each exercise, the subjects were instructed
to perform repetitions that illustrate common incorrect ways to perform each
exercise. Specifically, we consider the following types of mistakes:

Squat Knees Over Toes (KOT) The subject executes a squat, but while
lowering his back, the subject goes beyond alignment so that the knees go
far over the toes.

Squat Knock Knees (KK) The subject executes a squat, but while lowering
his back, the subject collapses his knees inward.

Squat Forward Trunk Lean (FTL) The subject executes a squat, but while
lowering his back, the subject tilts his trunk forward, so that his back is no
longer straight or perpendicular to the ground.

Forward lunge KOT The subject executes a forward lunge, but while step-
ping forward, the subject goes beyond alignment so that the knees go far
over the toes and the forward knee is bent further than a 90 degree angle.

Forward lunge KK The subject executes a forward lunge, but while stepping
forward, the subject collapses his forward knee inward.

Forward lunge FTL The subject executes a forward lunge, but while stepping
forward, the subject tilts his trunk forward, so that his back is no longer
straight or perpendicular to the ground.

Side lunge FTL The subject executes a side lunge, but while stepping side-
ways with his right leg, the subject tilts his trunk forward, so that his back
is no longer straight or perpendicular to the ground.

For side lunges, only the forward trunk lean was performed because the other
two mistakes are not applicable to this exercise.

2.4 Protocol

The study protocol was designed in collaboration with biomechanics researchers
with extensive expertise in collecting and analyzing data of rehabilitation exer-
cises. Each subject was instructed to perform six sets of ten repetitions of each
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type of exercise (squat, forward lunge, and side lunge). Given sufficient rest in
between the sets, the subjects were asked to perform ten repetitions of the ex-
ercise within a set one after the other, while briefly returning to an anatomical
neutral position between repetitions. Each set was monitored using a Kinect
(Microsoft Kinect V2) that is able to capture the movement of 25 joints at 30
Hz. The Kinect was positioned such that the subject was facing the Kinect at a
distance of 1-2 m.

More specifically, the subjects were asked per exercise to first perform three
sets of ten correct repetitions. Before the first set of each exercise, the cor-
rect execution was explained and demonstrated by a physiotherapist. In case of
the forward lunge, the subjects were asked to alternate between stepping for-
ward with their left and right leg between executions. Next, the physiotherapist
demonstrated mistakes that are often made by patients while executing these
three exercises. For squats and forward lunges, the KOT, KK, and FTL mistakes
were demonstrated and the subjects performed one set of ten repetitions of each.
For side lunges, only the FTL mistake was demonstrated as the other two mis-
takes are not applicable. The subjects performed three sets of ten repetitions of
the FTL mistake in case of the side lunges, because we wanted to collect the
same number of recorded repetitions per exercise.

3 The AMIE System

Our goal is to develop a Kinect-based system that provides automatic feedback
to patients. Such a system requires performing the following steps:

1. Extracting the raw data from the Kinect;
2. Partitioning the stream of data into individual examples;
3. Rerepresenting the data into a format that is suitable for machine learning;
4. Learning a model to predict if an exercise was done correctly or not; and
5. Providing feedback to the user about his/her exercise execution using the

learned model.

In this paper, we study whether detecting if an exercise was performed cor-
rectly or not is feasible. We establish a proof of concept called AMIE (Automatic
Monitoring of Indoor Exercises) that currently addresses only the first four tasks.

3.1 Extracting the Kinect data

The Kinect records a set of exercise repetitions as a video, which consists of a
sequence of depth frames. A depth frame has a resolution of 512 x 424 pixels
where each pixel represents the distance (in millimeters) of the closest object
seen by that pixel. Using the Kinect’s built-in algorithms, each depth frame can
be processed into a stick figure (Figure 2).

Each set of repetitions is stored as a XEF file (eXtended Event Files), which is
a format native to the Kinect SDK that can only be interpreted by applications
developed in the closed software system of the Kinect. It cannot be directly
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examined by conventional data analysis tools such as Excel, R, and Python.
Through manual examination of the Kinect SDK and some reverse engineering,
we have developed a tool that takes as input a Kinect video of n depth frames
stored as a XEF file and outputs a sequence of n stick figures in JSON format.
This tool is freely available at http://dtai.cs.kuleuven.be/software/amie.

(a) (b) (c)

Fig. 2. (a) A depth frame as shown in KinectStudio, an application for recording
and viewing Kinect videos built on the Kinect SDK (b) The stick figure built by the
Kinect’s algorithms as shown in KinectStudio (c) The same stick figure extracted from
the native Kinect file format and plotted using Python, a popular data analysis tool.

All ten subjects performed roughly six sets of ten repetitions for three exer-
cises. Our data set D contains exactly 186 videos v ∈ D. We sometimes have
more than 18 videos (3 exercises × 6 execution sets) per subject, because a video
recording of ten repetitions could get broken up in two separate videos due to
technical issues.3 Hence, not every video contains exactly ten executions.

Each video v ∈ D can be represented as a tuple

v = ([fi]
n
i=0, s, e,m)

where [fi]
n
i=0 is a sequence of n stick figures f0, ..., fn, s is the identifier of the

subject performing the exercise, e is the exercise type (squat, forward lunge or
side lunge), and m is the mistake type. The mistake type m is KOT, KK, FTL
or None. None means the exercise was performed correctly. A stick figure fi is
a vector of 25 joints. Each joint is represented by (x, y, z) coordinates, where z
represents the distance to the Kinect camera and x and y represent respectively
horizontal and vertical positions in space. Examples of joints are the left ankle,
the right knee, the left elbow, the spine base and middle, the left shoulder, etc.

3 The subject were, in addition to the Kinect, also tracked with a Vicon camera system
using reflective markers attached to the body. Due to sweat and movement, these
markers sometimes fell off and the exercise repetition set was interrupted to reattach
a marker. The collected Vicon data is not used in this paper.
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3.2 Partitioning a set of exercises into a single repetition

Each video v in our data set D contains a sequence of stick figures [fi]
n
i=0 that

represents multiple repetitions of an exercise. This is problematic because we
need to work on the level of an individual repetition in order to ascertain if it
was performed correctly or not. Therefore, a sequence containing one set of k
executions needs to be subdivided into k subsequences, with one subsequence
for each repetition. We employed the following semi-supervised approach to ac-
complish this:

1. We select a reference stick figure fref that captures the pose of being in-
between executions, such as in Figure 3a. Typically, such a pose can be
found as either the start or end position in the sequence.

2. We convert the original sequence of stick figures [fi]
n
i=0 into an equal length

1-dimensional signal [d(fref , fi)]
n
i=0, where the ith value of the new signal is

the distance d between the reference stick figure and the ith stick figure in
the original sequence. The distance d between two stick figures is the sum of
the Euclidean distances between the 25 joints of each stick figure.

3. This new signal has a sine-like shape (Figure 3b), because the distance be-
tween a stick figure in-between repetitions and fref is small whereas the
distance between a stick figure in mid-exercise and fref is high. The valleys
in the signal (i.e., the negative peaks) represent likely points in time when
the subject is in between repetitions. To detect the valleys, we employ a
modified version of the peak-finding algorithm in the signal processing tool-
box of Matlab.4 These valleys are used to subdivide the original sequence
series into a number of subsequences, where one subsequence encompasses
one repetition.

4. Depending on the quality of the resulting subsequences in the previous step,
we do some additional manual modifications, such as inserting an extra split-
ting point or removing some stick figures from the start or the end of the
original sequence.

Using our approach, we transformed the dataset D of 186 videos into a new
dataset D′ that contains 1790 repetitions r ∈ D′. The last step in our semi-
supervised approach was necessary only for 15 out of 186 videos.5

Each repetition r is represented by a 4-tuple ([fi]
n
i=0, s, e,m) just like a video

v. The difference is that the sequence of stick figures [fi]
n
i=0 of each repetition

r ∈ D′ now only contains one repetition of the performed exercise instead of
multiple repetitions. The length of the stick figure sequence per repetition ranges
from 40 to 308 (136 ± 37).

4 Our peak-finding algorithm takes the minimal peak distance as input, which we es-
timate from the data using the length of the sequence and the dominating frequency
in the Fourier transform.

5 Manual modifications were typically needed if the video recording was cut off too
late, adding extra noise at the end.
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(a) (b)

Fig. 3. (a) The reference stick figure. (b) The blue signal shows the distance between
the reference stick figure and each stick figure in a sequence containing ten repetitions of
an exercise. The automatically generated split points are highlighted with red vertical
lines.

3.3 Feature construction

Two main challenges prevent us from applying an off-the-shelf machine learning
algorithm directly to our data, its heterogeneity (e.g., examples are recorded
from different subjects) and temporal nature (e.g., examples are sequences of
varying length). We detail two consecutive transformations that address these
challenges and construct a feature vector for each repetition r. We refer to these
transformations as the heterogeneity transformation and the temporal transfor-
mation.

Heterogeneity transformation: Not only do the subjects differ in height
and weight, but also their relative position and orientation to the Kinect camera
vary from exercise to exercise. All these variations affect the absolute coordinates
recorded by the Kinect, but are independent to the executed exercise and its
correctness. Therefore, we aim to remove these variations from the data, by using
the geometrical angles in the interconnected joint triplets instead of the absolute
coordinates. For example, (left hip, left knee, left ankle) is an interconnected joint
triplet because the knee connects the hip and the ankle. Its geometrical angle
is the angle formed at the left knee joint enclosed by the (left hip, left knee)
and (left knee, left ankle) segments. For each stick figure fi, the angles of all 30
such interconnected joint triplets are used as features. An additional advantage
is that our new representation mimics the language physiotherapists often use to
describe whether an exercise is performed correct or wrong (e.g., a good forward
lunge has the forward knee bent at 90 degrees).

Temporal transformation: This transformation maps the representation
of an exercise repetition from the variable-length sequence of highly self-correlated
stick figures (represented by angles) to a fixed length feature vector. We observe
that the temporal relationship between stick figures is not important to our
tasks, because the exercises and mistakes can be recognized by specific poses.
For example, the exercises are recognizable by the poses in Figure 1, and a KOT
mistake is made if a stick figure’s knees go far over its toes. Moreover, only a
subset of the stick figures need to be specific to an exercise or mistake type
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to label the entire exercise repetition. Following this insight, our tasks can be
framed as Multiple Instance Learning (MIL) problems. In MIL, learners have
access to bags of examples, and each bag containing multiple examples. A bag is
labeled positive if one or more of the contained examples is positive and negative
otherwise [23]. In our case, a bag contains all the stick figures of one exercise
repetition. We employ a popular approach for dealing with multiple instance
learning: a metadata-based algorithm where the metadata for each bag is some
set of statistics over the instances in the bag. This way the bags are mapped to
single-instance feature vectors and the classification task can then be performed
by an arbitrary single-instance machine learning algorithm [23, 11]. Our set of
statistics aims to describe the value distribution for each interconnected joint
triplet angle using the following five summary statistics: minimum, maximum,
mean, median and standard deviation. Each exercise is therefore mapped to a
fixed length feature vector of 150 summary statistics (30 angles × 5 statistics).

3.4 Model learning

AMIE learns three separate models, one for each task we consider:

T1: Identifying which exercise the patient is performing.
T2: Predicting whether the exercise was performed correctly or not.
T3: Detecting the type of mistake that was made when performing the exercise.

The first task may not strictly be necessary as a home monitoring system could
ask the patient to perform the exercises in a set order. However, the ability
to detect automatically which exercise is being performed would give the pa-
tient more autonomy when conducting his rehabilitation and would allow him
to dynamically decide on and update his exercise routine.

Given that we have represented our data in a fixed-length feature format,
it is possible to solve each of these learning problems using standard, off-the-
shelf machine learning techniques. We tested five popular algorithms and found
XGBoost [8] to be the most suitable. We provide further details on the process
in the following section.

4 Experiments

The goal of the empirical evaluation is to address the following six research
questions:

Q1: Can we accurately detect what exercise is being performed?
Q2: Can we accurately detect whether the exercise was performed correctly?
Q3: Can we accurately detect what type of mistake was made?
Q4: How does our classification approach compare to using hand-crafted rules

and a nearest-neighbor approach?
Q5: Can our pipeline provide feedback to a patient in real-time?
Q6: Is the accuracy of AMIE dependent on the type of mistake?
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4.1 Evaluation methodology

When evaluating how well our learned models will generalize to unseen data,
special care has to be taken in our setting to account for two types of dependen-
cies that appear in our data. The first dependency arises due to the temporal
nature of the data. An individual example is a single repetition of an exercise,
but that repetition is done in a set of ten consecutive repetitions. Hence it will
be correlated to the other examples in that set. The second dependency arises
because one subject performs multiple repetition sets. Consequently, standard
cross-validation is unsuitable as a repetition from the same set (or subject) may
appear in both the train set and the test set, which could lead to over-optimistic
accuracy estimates.6 Therefore, we see two possibilities for performing cross-
validation.

Leave-one-set-out cross-validation In this setting, the data of one repetition
set appears in the test set and the data of all other 185 repetition sets appears
in the training set. Practically, this setting estimates the accuracy of a system
that would only be deployed to monitor patients if it had examples of them
performing the specific exercises that they must complete at home.

Leave-one-subject-out cross-validation In this setting, the data for nine
subjects appears in the training set and the data for the remaining subject
appears in the test set. Practically, this setting estimates the accuracy of
a system that can be deployed without collecting any data about the new
patient performing his exercises. In other words, a system that is trained
based on a fixed set of subjects and then deployed on new (i.e., previously
unseen) subjects.

For each of our research questions, we consider both setups.

4.2 Results for Q1 through Q3

Research questions Q1 through Q3 correspond to evaluating our accuracy on
tasks T1 through T3. The learners we considered are Logistic Regression, Naive
Bayes, Decision Tree, Random Forest, and XGBoost [8]. For all learners, we
performed no hyperparameter tuning to avoid overfitting due to our limited
amount of data. That is, we used the standard parameter settings from the
Scikit-learn [20] and XGBoost [8] Python packages.

We trained models for each learner on all three classification tasks using
both cross-validation schemes (Table 1). On our data, we can almost perfectly
determine which exercise is being performed with all models. However, further
investigation is needed to determine if this result holds when confronted with
a wider range of exercise types, particularly for exercises that exhibit highly
similar movement patterns.7 When determining the correctness and mistake of

6 Preliminary research suggests that the standard cross-validation setting indeed leads
to an over-optimistic accuracy estimate.

7 For example, a normal squat and a single-leg-squat exhibit similar movement pat-
terns which could confuse our learner.
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an exercise, XGBoost performs best under both cross-validation settings with
an accuracy of at least 73%.8 While we perform significantly better in T3 than
random guessing (25%) or predicting the majority class (50%), we deem AMIE’s
current accuracy insufficient to be used as an autonomous system without the
supervision of a physiotherapist.

Table 1. Accuracy of AMIE and baselines for different tasks, learners and cross-
validation settings. We can almost perfectly identify the type of exercise (T1) with
every learner. XGBoost generally performs the best at detecting correctness (T2) and
mistake type (T3).

Task: T1 T2 T3
Cross-validation setting: set subject set subject set subject

AMIE: Decision Tree 0.992 0.973 0.731 0.671 0.642 0.555
Logistic Regression 0.999 0.989 0.772 0.708 0.726 0.672
Naive Bayes 0.982 0.972 0.633 0.646 0.478 0.547
Random Forest 0.997 0.987 0.762 0.700 0.705 0.675
XGBoost 0.997 0.990 0.790 0.734 0.741 0.738

Baselines: NN-DTW (absolute coord.) 1.000 0.965 0.840 0.623 0.627 0.555
NN-DTW (angles) 0.997 0.990 0.713 0.648 0.576 0.549
Handcrafted Rule Set X X 0.634 0.634 0.590 0.590

4.3 Results for Q4

We compared AMIE against two popular approaches in the literature: a nearest-
neighbor approach using Dynamic Time Warping as a distance measure (NN-
DTW), and a rule set handcrafted by a biomechanics researcher.

NN-DTW: This baseline is based on the work of Su et al. [25], who provide
feedback on rehabilitation exercises using the distance of the executed exercise
to a library of reference exercises. We employ the NN-DTW baseline using two
different representations of our stick figures: the initial representation with the
absolute (x, y, z)-coordinates of 25 joints and the representation using the ge-
ometrical angles in the interconnected joint triplets, which is obtained after
applying the heterogeneity transformation as detailed in Section 3.3.

Handcrafted Rule Set: This baseline is inspired by Zhao et al. [30, 29], who
introduce a system that allows physiotherapists to express ‘correctness rules’.
Our rule set consists of three rules, one for each mistake. For example, the KOT
rule states that if both the left and right knee joints have a z-coordinate that is
closer to the camera than the z-coordinates of the left and right toes, then the
subject is performing a KOT mistake. The KK and FTL mistakes are encoded

8 All learners employ only one model to detect mistakes for all three exercises. We
tried learning one model per exercise, but noticed no difference in accuracy.
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in a similar way. To reduce the effect of noise in the data, we only predict an
exercise repetition to have a specific mistake if at least ten stick figures in the
repetition show that mistake. If this is not the case, the repetition is predicted
to be correct. If multiple mistakes are detected in the exercise repetition, then
the mistake with the most supporting stick figures is predicted.

The results of our baselines are shown in the lower half of Table 1. Except
for one occurrence, AMIE (using the XGBoost classifier) always outperforms
both the NN-DTW baselines and the handcrafted rule set on T2 and T3. This
suggests that to provide accurate feedback, we cannot rely purely on domain
experts, as a more flexible approach than a handcrafted rule set is necessary.
However, we also cannot blindly apply machine learning techniques; NN-DTW
is the most popular way to classify time series [2], yet it performs significantly
worse than AMIE.

4.4 Results for Q5

The machine learning pipeline AMIE consists of four steps: (1) extracting the
raw data from the Kinect, (2) partitioning the stream of data into individual
examples, (3) constructing a feature vector for each example, and (4) detecting
the examples’ correctness using the trained models. Extracting the raw data
from the Kinect into the JSON format and loading it in Python takes 0.15s
for one repetition set. Partitioning one repetition set into individual examples
takes 0.03s on average. Constructing the feature vectors takes 0.05s on aver-
age per repetition set and detecting correctness (i.e., predicting the labels for
T1 through T3 using our trained models) takes 0.0001s on average per repeti-
tion set. In summary, a patient receives feedback from AMIE within 0.28s after
performing his exercises, which is almost instantaneous for human subjects. In
addition, the largest fraction of our processing time is due to unnecessary disk
I/O that could be avoided in a commercial implementation of AMIE. In this
way, a patient can immediately adapt his or her incorrect movement patterns
to the correct movement patterns, therefore accelerating the learning process of
rehabilitation and mimicking a real-life scenario where a focused physiotherapist
typically provides expert feedback after a few repetitions in practice.

4.5 Results for Q6

To check whether the accuracy of AMIE is dependent on the type of mistake,
we inspect the confusion matrices for detecting mistake type for both our cross-
validation schemes for XGBoost, our best performing learner (Table 2). We ob-
serve a higher accuracy, precision, and recall on the FTL mistake than on the
KOT and KK mistake types. We can think of two hypotheses as to why this is
the case. First, based on preliminary research and manual examination of the
data, we hypothesize that the Kinect tracks the upper body more accurately
than the lower body. This would naturally explain why we can accurately detect
FTL, which is a mistake related to the upper body, and not KOT nor KK, which
are mistakes related to the lower body. However, further research is needed to
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confirm this hypothesis. A second hypothesis is that our representation is im-
perfect in that it contains the information necessary to detect the FTL mistake,
but lacks the necessary features to detect other mistakes. For example, KK is a
type of mistake which will show almost no notable difference in angles of inter-
connected joint triplets, as the geometrical angle between the left and right (hip,
knee, ankle) joint triplets will be unaffected. We conclude that the accuracy of
AMIE depends on the type of mistake that was made during an exercise. To
discern the exact reason as to why this is the case, further research is needed.

Table 2. Confusion matrices for detecting the type of mistake for (a) leave-one-set-out
cross-validation and (b) leave-one-subject-out cross-validation.

Predicted None KOT KK FTL
Actual

None 816 30 19 30
KOT 161 10 20 5
KK 110 26 52 6
FTL 40 8 8 449

(a)

Predicted None KOT KK FTL
Actual

None 724 56 66 49
KOT 121 38 28 9
KK 75 10 101 8
FTL 37 3 6 459

(b)

5 Related work

Previous work on the topic of home monitoring systems for rehabilitation ex-
ercises can be roughly divided in three categories: (1) work that qualitatively
evaluates whether patients are willing to use a home monitoring system and
what their expectations are of such a system [7, 16]; (2) work that investigates
the readiness and accuracy of several tracking systems to be used in a home
monitoring system [10, 21, 26]; and (3) work that investigates home monitoring
systems that can provide feedback using tracking data [1, 6, 10, 15, 25, 26, 30, 29].

One of the hypotheses in our paper relevant to the second category is that
the Kinect tracking system is not accurate enough to detect lower body mis-
takes. Pfister et al. [21] and Tang et al. [26] partially confirm this hypothesis by
comparing the tracking capabilities of the Kinect to that of a Vicon camera sys-
tem, which is considered to be the gold standard for tracking movements of the
human body in biomechanics research. This hypothesis also explains why a large
portion of the related work that incorporates the Kinect in a home monitoring
systems focuses on upper body exercises [6, 25, 26, 7, 16].

Each paper in the third category contains one or more of three contributions:
(a) describing the model in technical depth, (b) describing the used data set and
experimental setup, and (c) outlining a clear vision on how the system should be
implemented in practice. Typically, papers in this category contain either (a,c)
or (b,c), but rarely (a,b,c). We consider our paper to be an (a,b) paper. We did
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not outline a vision on how the system should be implemented in practice both
for brevity and due to the fact that our paper is mostly a feasibility study.

Examples of (a,c) work are Anton et al. who introduce KiReS [1], Tang et
al. who showcase Phyio@Home [26], and Zhao et al. who introduce a rule-based
approach for real-time exercise quality assessment and feedback [30, 29].

An example of (b,c) work is Komatireddy et al. who introduce the VERA
system [15]. In terms of experimental setup, it is the most similar work to our
paper; they collected data of ten healthy subjects within age 18-36 and asked
them to perform ten correct repetitions of four different exercises (sitting knee
extension, standing knee flexion, deep lunge, and squat). However, they provide
no description on how the correctness of an exercise is determined and do not
discuss the accuracy of the system compared to a physiotherapist in-depth.

Su et al. [25] wrote one of the few (a,b,c) papers. They introduce a distance-
based approach to provide feedback on rehabilitation exercises using previous
recordings. A physiotherapist first recorded correct executions of the exercises
together with the patient. Feedback was then provided on new exercise execu-
tions at home using the distance to those reference executions. The task they
consider is simpler than the one addressed in this paper however, because they
evaluate their approach on shoulder exercises, which exhibit less complex move-
ment patterns than the exercises we consider and are more accurately tracked
by the Kinect. They also construct a per-subject model, which is easier than
constructing a global model that can generalize over unseen subjects. A final
note is that we could not find any information on the size of the employed test
and training data, so it is unknown how reliable the estimated accuracy of their
approach is.

6 Conclusion

We presented AMIE, a machine learning approach for automatically monitoring
the execution of commonly used rehabilitation exercises using the Kinect, a low-
cost and portable 3D-camera system. This paper contributes with respect to
existing work by being one of the first to comprehensively detail the collected
data set, describe the used classification system in depth, report quantitative
results about our performance, and publicly release both the collected data set
and used software tools.

We evaluated AMIE on a data set of ten test subjects who each performed
six sets of ten repetitions of three commonly used rehabilitation exercises (i.e.,
squat, forward lunge and side lunge). AMIE detects the type of exercise with
99% accuracy and the type of mistake that was made with 73% accuracy. It
does this almost in real-time. An important limitation of AMIE is that it can
accurately detect movement mistakes of the upper body, but struggles with
movement mistakes related to the lower body. We hypothesize that some non-
trivial technical improvements (i.e., more accurate extraction of stick figures
from depth frames and a better representation of our data) are necessary to
solve the remainder of our task and implement the system in practice.
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