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Abstract. Which of your team’s possible lineups has the best chances
against each of your opponent’s possible lineups? To answer this question,
we develop LinNet (which stands for LINeup NETwork). LinNet ex-
ploits the dynamics of a directed network that captures the performance
of lineups during their matchups. The nodes of this network represent
the different lineups, while an edge from node B to node A exists if lineup
λA has outperformed lineup λB . We further annotate each edge with the
corresponding performance margin (point margin per minute). We then
utilize this structure to learn a set of latent features for each node (i.e.,
lineup) using the node2vec framework. Consequently, using the latent,
learned features, LinNet builds a logistic regression model for the prob-
ability of lineup λA outperforming lineup λB . We evaluate the proposed
method by using NBA lineup data from the five seasons between 2007-08
and 2011-12. Our results indicate that our method has an out-of-sample
accuracy of 68%. In comparison, utilizing simple network centrality met-
rics (i.e., PageRank) achieves an accuracy of just 53%, while using the
adjusted plus-minus of the players in the lineup for the same prediction
problem provides an accuracy of only 55%. We have also explored the
adjusted lineups’ plus-minus as our predictors and obtained an accuracy
of 59%. Furthermore, the probability output of LinNet is well-calibrated
as indicated by the Brier score and the reliability curve. One of the main
benefits of LinNet is its generic nature that allows it to be applied in
different sports since the only input required is the lineups’ matchup
network, i.e., not any sport-specific features are needed.

Keywords: Network Science · Network embedding · Sports Analytics ·
Probabilistic models.

1 Introduction

During the past decade or so, the availability of detailed sports data in conjunc-
tion with the success enjoyed by early adopters, has led to the explosion of the
field of sports analytics. Part of this can be attributed to the advancements in
computing technologies that have facilitated the collection of detailed (spatio-
temporal) data that can shed light to aspects of the sport(s) in question that
were not possible before. For example, since 2013 a computer vision system in-
stalled in all NBA stadiums collects the location of all players on the court and
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the ball 25 times every second. Using this information the Toronto Raptors were
able to (manually) identify the optimal position for defenders given the offensive
scheme. These optimal defenders are called ghosts and can be used to evaluate
defensive skills, an aspect of the game severely underrepresented in traditional
boxscore statistics [8]. Since then automated ways for ghosting, and in general
for analyzing and understanding fine-grained in-game behavior, have been de-
veloped - in various sport - relying on the advancements in representation (deep)
learning (e.g., [7, 16, 19, 10]).

However, representation learning can also help answer more traditional ques-
tions in a new way. For example, one of the decisions that a basketball coach has
to constantly make during a game (or even for game preparation) is what lineup
to play in order to maximize the probability of outperforming the opponent’s
lineup currently on the court. This lineup evaluation problem has been tradi-
tionally addressed through ranking lineups. More specifically, player and lineup
ratings based on (adjusted) plus/minus-like approaches [18], or efficiency ratings
(i.e., points scored/allowed/net per 100 possessions [1]) have been used to rank
lineups. This ranking can then be used to evaluate which lineup is better. Never-
theless, these ratings do not explicitly account for the game situation/context.
For instance, a lineup that outperformed its opponent by 10 points in garbage
time does not provide us with the same information as compared to the same
lineup outperforming its opponent during the start of the game. Hence, to ac-
count for this the use of in-game win probability models has been proposed
[12]. In this case, instead of computing the net points scored in every stint1 we
calculate the win probability added by each of the two lineups.

To the best of our knowledge apart from these basic metrics that are used
to rank lineups, there exist no studies in the public sphere that evaluate the
predictive power of these metrics and/or introduce other ways of evaluating
and predicting lineup matchups2. In the current study, we propose a completely
different approach that is based on representation learning on networks. In par-
ticular, we first define the matchup network G:

Definition 1.1: Matchup Network

The matchup network G = (V, E ,W), is a weighted directed network
where nodes represent lineups. An edge ei,j ∈ E points from node i ∈ V
to node j ∈ V iff lineup j has outperformed lineup i. The edge weight
wei,j is equal to the performance margin of the corresponding matchup.

Using the structure of this network we can learn a vector representation of
the nodes. For this purpose we utilize a network embedding, which projects the

1 Stint refers to a time-period during the game when no substitutions happen by either
team.

2 Of course, we expect professional teams to perform their own analysis - potentially
beyond simply ranking - but their proprietary nature makes it impossible to study
and evaluate.
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network nodes on a latent space X . In our study we adopt the node2vec [6]
framework for learning the latent space. Simply put, the embedding learns a set
of features xu for node u. These features are then utilized to build a logistic
regression model that models the probability of lineup λi outperforming lineup
λj , Pr[λi � λj |xλi ,xλj ]. Figure 1 visually represents the LinNet framework.

Fig. 1. The LinNet lineup evaluation framework

Our evaluations indicate that LinNet can predict the outcome of a lineup
matchup correctly with approximately 68% accuracy, while the probabilities are
well-calibrated with a Brier score of 0.19. Furthermore, the probability validation
curve of LinNet is statistically indistinguishable from the y = x line, i.e., the
predicted matchup probability is equal to the actual probability (see Figure 3).
Hence, the logistic regression model on the latent space X captures accurately the
lineups’ matchup probabilities. In comparison, we evaluate the following three
baseline methods inspired both from current approaches in ranking lineups as
well as network ranking; (i) a PageRank-based ranking using the same matchup
lineup network G, (ii) a model based on the adjusted plus/minus of the players
that are part of each lineup, and (iii) a model based on the adjusted plus/minus
of the lineups. The lineup adjusted plus/minus has the best performance among
the baselines, but still worse than LinNet, with an accuracy of 59%.

The main contribution of our work is twofold:

– We introduce and evaluate a novel approach for evaluating basketball lineups
in a probabilistic way using representation learning on networks.

– The proposed method is generic, i.e., it can be adopted in other sports with-
out the need to incorporate sport-specific information.

We also hope that this study will trigger more interest and research in the
applications of network science in sports. While network science methods have
been used in the literature to study and answer sports analytics questions, these
studies are primarily focused on analyzing the most straightforward network
structure in sports, namely, passing networks, i.e., who-passes-to-whom struc-
tures (e.g., [5, 4, 14]). However, networks can also be used to represent complex
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structures that might not be visible directly – such as the win-loss relationships
of teams or lineups that we use in our current study – and can provide new and
novel insights.

The rest of the paper is organized as following. In Section 2 we present
in details the operations of LinNet as well as the datasets we used. Section
3 presents our results, while Section 4 concludes our study and discusses the
implications and limitations of our work.

2 Materials and Methods

In this section we will present in detail (a) the design of LinNet, (b) the baseline
methods for comparison, and (c) the datasets we used for our evaluations.

2.1 LinNet

The first step of LinNet is defining the matchup network G. There is flexibility
in choosing the performance margin that one can use for the edge weights. In
the current implementation of LinNet, the weights of G correspond to the point
margin per minute for the two lineups.

Once the network is obtained the next step is to learn the network embedding.
As our network embedding mechanism we will utilize the approach proposed by
Grover and Leskovec [6], namely, node2vec. node2vec utilizes (2nd order) random
walks on the network in order to learn the latent features of the nodes, i.e., a
function f : V → <d, where d is the dimensionality of the latent space. Starting
from node u in the network and following the random walk strategy R the
network neighborhood NR(u) of u is defined. Then node2vec learns the network
embedding f by solving the following optimization problem:

max
f

∑
u∈V

log(Pr[NR(u)|f(u)]) (1)

where Pr[NR(u)|f(u)] is the (conditional) probability of observing NR(u) as the
network neighborhood for node u. Simply put, the network embedding maxi-
mizes the log-likelihood of observing a network neighborhood NR(u) for node u
conditioned on the network embedding f . To keep the optimization tractable,
node2vec makes use of two standard assumptions; (i) conditional independence
of the nodes in NR(u), and (ii) the probability of each source-neighborhood node
pair is modeled through a softmax of the dot product of their features f (to be
learned). When two nodes are similar, they are expected to appear within the
same random walk often, and the optimization problem (1) ensures that they
will be close in the embedding space.

The random walk strategy - which implicitly defines the similarity of two
nodes - is defined by two parameters, p and q, that offer a balance between a
purely breadth-first search walk and a purely depth-first search walk. In partic-
ular, the random walk strategy of node2vec includes a bias term α controlled by
parameters p and q. Assuming that a random walk is on node u (coming from
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node v), the unnormalized transition probability πux = αpq(v, x) ·wux. With dux
being the shortest path distance between u and x we have:

πux =


1/p , if dux = 0

1 , if dux = 1

1/q , if dux = 2

As alluded to above, parameters p and q control the type of network neigh-
borhood NR(u) we obtain. Different sampling strategies will provide different
embeddings. For example, if we are interested in having a set of nodes that are
tightly connected in the original network, to be close to each other in the latent
space, p and q need to be picked in such a way that allows for “local” sampling.
In our application we are interested more in identifying structurally equivalent
nodes, i.e., nodes that are similar because their connections in the network are
similar (not necessarily close to each other with respect to network distance).
This requires a sampling strategy that allows for the network neighborhood of
a node to include nodes that are further away as well. Given this objective and
the recommendations by Grover and Leskovec [6] we choose q = 3 and p = 0.5
for our evaluations. Furthermore, we generate 3,000 walks for each network, of
3,500 hops each, while, we choose as our latent space dimensionality, d = 128.
Increasing the dimensionality of the space improves the quality of the embedding
as one might have expected, however, our experiments indicate that increasing
further the dimensionality beyond d = 128 we operate with diminishing returns
(with regards to computational cost and improvement in performance).

Once the latent space X is obtained, we can build a logistic regression model
for the probability of lineup λi outperforming λj . In particular, we use the
Bradley-Terry model [2]. The Bradley-Terry model is a method for (probabilis-
tically) ordering a given set of items based on their characteristics and under-
standing the impact of these characteristics on the ranking. In our case the set
of items are the lineups and the output of the model for items i and j provides
us essentially with the probability of lineup λi outperforming λj . In particular,
the Bradley-Terry model is described by [2]:

Pr(λi � λj |πi, πj) =
eπi−πj

1 + eπi−πj
(2)

where πi is λi’s ability. Given a set of lineup-specific explanatory variables zi,
the difference in the ability of lineups λi and λj can be expressed as:

πi − πj =

d∑
r=1

αr(zir − zjr) + U (3)

where U ∼ N(0, σ2). The Bradley-Terry model is then a generalized linear model
that can be used to predict the probability of λi outperforming λj . In our case,
the explanatory variables are the latent features learned for each lineup, xλi .

Previously Unseen Lineups: One of the challenges (both in out-of-sample
evaluations as well as in a real-world setting), is how to treat lineups that we
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have not seen before, and hence, we do not have their latent space representation.
In the current design of LinNet we take the following simple approach. In
particular, for each lineup λi of team T we define the similarity in the players’
space σλi,λj of λi with λj ∈ LT , as the number of common players between
the two lineups (i.e., σλi,λj ∈ {0, . . . , 4}). One might expect that lineups with
high overlap in the players’ space, should also reside closely in the embedding
space. In order to get a feeling of whether this is true or not, we calculated
for every team and season the correlation between the similarity between two
lineups in the players’ space (i.e., σλi,λj ) and the distance for the corresponding
latent features (i.e., dist(xi,xj)). As we can see from Figure 2 all teams exhibit
negative correlations (all correlations are significant at the 0.001 level), which
means the more common players two lineups have, the more closely they will
be projected in the embedding space. Of course, the levels of correlation are
moderate at best since, the embedding space is obtained by considering the
performance of each lineup, and two lineups that differ by only one player might
still perform completely differently on the court. With this in mind, once we
obtain the lineup similarity values, we can assign the latent feature vector for
the previously unseen lineup λi as a weighted average of the lineups in LT (with
σ being the weighting factor):

xλi =

∑
λj∈LT

σλi,λj · xj∑
λj∈LT

σλi,λj
(4)

It should be evident that this is simply a heuristic that is currently imple-
mented in LinNet. One could think of other ways to approximate the latent
space features of a lineup not seen before.

2.2 Baselines

For comparison purposes we have also evaluated three baseline approaches for
predicting lineup matchup performance. The first one is based on network rank-
ing that operates directly on the matchup network (i.e., without involving any
embedding of the network), while the rest two are based on the adjusted plus/minus
rating of the players that belong to the lineup, as well as, the lineup itself.

Network Ranking In our prior work we have shown that ranking teams
through centrality metrics - and in particular PageRank - of a win-loss network,
achieves better matchup prediction accuracy as compared to their win-loss record
[13]. The intuition behind the team network ranking is that nodes (teams) with
high PageRank have outperformed many more teams or have outperformed good
teams that themselves have performed many other or good teams etc. Therefore,
we follow a similar approach using the lineup matchup network and rank lineups
based on their PageRank score. The PageRank of G is given by:
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Fig. 2. Lineups with higher overlap in terms of players exhibit smaller dis-
tance in the latent embedding space X

r = D(D − αA)−11 (5)

where A is the adjacency matrix of G, α is a parameter (a typical value of which is
0.85) and D is a diagonal matrix where dii = max(1, ki,out), with ki,out being the
out-degree of node i. Using the PageRank score differential ∆rij = rλi − rλj as
our independent variable we build a logistic regression model for the probability:
Pr(λi � λj |∆rij).

Player Adjusted plus/minus (PAPM) The APM statistic of a player is a
modern NBA statistic - and for many people the best single statistic we currently
have - for rating players [15]. It captures the additional points that the player
is expected to add with his presence in a lineup consisting of league average
players matching up with a lineup with league average players. APM captures
the impact of a player beyond pure scoring. For instance, a player might impact
the game by performing good screens that lead to open shots, something not
captured by current box score statistics. The other benefit of APM is that it
controls for the rest of the players in the lineups. More specifically the APM for
a player is calculated through a regression model. Let us consider that lineup λi
has played against λj , and has outscored the latter by y points per 48 minutes.
y is the dependent variable of the model, while the independent variable is a
binary vector p, each element of which represents a player. All elements of p
are 0 except for the players in the lineups. Assuming λi is the home lineup3,

3 If this information is not available - e.g., because the input data include the aggregate
time the lineups matched up over multiple games - without loss of generality we can
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pn = 1, ∀pn ∈ λi, while for the visiting lineup, pn = −1, ∀pn ∈ λj . Then these
data are used to train a regression model:

y = aT · p (6)

where a is the vector of regression coefficients. Once obtaining this vector, the
APM for player pn is simply apn . The rating of lineup λi, ρλi is then the average
APM of its players:

ρλi =
apn
5
, ∀pn ∈ λi (7)

Using the lineup rating differential ∆ρij = ρλi−ρλj as our independent variable
we again build a logistic regression model for the probability: Pr(λi � λj |∆ρij).

Lineup Adjusted plus/minus (LAPM) The above baseline method assumes
that the lineup is simply the sum of its individual parts in a vacuum. However,
this is certainly not true in many cases (if not in most/all of the cases). Players
can help each other boost their performance, or they might not be in sync
and hence, not perform as expected. For example, one should expect that a
lineup that includes your best player (e.g., the highest APM) should perform
better than one where he is substituted. However, this is not necessarily true.
For instance, Skinner [17] used network theory to show that a lineup that does
not include the best player of the team, might perform better as compared to
lineups including this payer. Thus, simply summing up the individual players’
contribution can overestimate or underestimate a lineup’s performance. For this
reason, we examine another baseline that considers the adjusted plus/minus of
the lineups (as opposed to individual players). More specifically, we follow the
same approach as with PAPM but our independent variable binary vector now
represents lineups rather than individual players. The corresponding regression
coefficient represents the adjusted plus/minus of the lineup lλi . Using the LAPM
differential ∆lij = lλi − lλj we further build a logistic regression model for the
probability: Pr(λi � λj |∆lij).

2.3 Datasets

In order to evaluate LinNet we used lineup data during the 5 NBA seasons be-
tween 2007-08 and 2011-12 obtained through basketballvalue.com. This dataset
includes information for all the lineup matchups for each of the 5 seasons. In
particular, for each pair of lineups (e.g., λi, λj) that matched up on the court
we obtain the following information:

1. Total time of matchup
2. Total point differential
3. Players of λi

consider the home lineup to be the one with lower ID number for reference purposes.
This is in fact the setting we have in our dataset.
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4. Players of λj

We would like to note here that these data include aggregate information
for matchups between lineups. For example, if lineup λA played against λB
over multiple stints - either during the same game or across different games -
the performance over these matchups will be aggregated. The benefit of this
approach is that we now have a longer, and potentially more robust (see Section
4), observation period for the matchup between λA and λB . On the other hand,
aggregating information does not allow us to account for home-field advantage.
Nevertheless, the latter is typically considered to be 3 points per game (i.e., per
48 minutes) in the NBA [18], which means that during a 5 minute stint there will
be an approximately 0.3 points adjustment missed. Hence, we should not expect
a big impact on our final results. Furthermore, in our dataset only approximately
10% of the lineup pairs have matched-up over separate stints.

We used these data in order to obtain both the matchup network as well as
to calculate the APM for every player in each season. Using these data we build
the lineup matchup networks. Table 1 depicts some basic statistics for these
networks. Note here that the dataset for the 2011-12 season includes only ap-
proximately 75% of that season’s games and this is why the network is smaller.
All networks have similar size and density and exhibit similar diameter. Fur-
thermore, they all have right-skewed degree distributions. Table 1 also presents
the power-law exponent obtained for every network after fitting a power-law
distribution, i.e., P (k) ∝ k−γ , where k is the node degree.

Season Nodes Edges Diameter Power-Law Expo-
nent γ

2007-08 10,380 50,038 15 3.5
2008-09 10,004 48,414 16 2.8
2009-10 9,979 49,258 15 2.6
2010-11 10,605 49,694 18 2.5
2011-12 8,498 35,134 17 2.8

Table 1. Basic network statistics for the lineup matchup networks used.

3 Analysis and Results

We now turn our attention to evaluating LinNet. Our focus is on evaluating
the accuracy of LinNet in predicting future lineup matchups, as well as the
calibration of the inferred probabilities. For every season, we build LinNet (both
the network embedding as well as the Bradley-Terry model) using 80% of the
matchups and we evaluate them on the remaining 20% of the matchups. Our
evaluation metrics include: (i) prediction accuracy, (ii) Brier score and (iii) the
probability calibration curve.

3.1 Prediction Accuracy

Table 2 presents the accuracy of each method predicting the outcome of lineup
matchups over all seasons. As we can see LinNet outperforms all the baselines
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during all five seasons. Out of the three baselines we evaluated, LAPM performs
the best. This further indicates that the performance of a lineup cannot be
simply described by the sum of its individual parts; metrics that evaluate each
player individually cannot capture well the performance of a lineup.

Season Page Rank PAPM LAPM LinNet
2007-08 52% 55% 59% 67%
2008-09 53% 56% 57% 69%
2009-10 52% 54% 58% 68%
2010-11 54% 55% 59% 68%
2011-12 53% 56% 58% 67%
Table 2. LinNet outperforms all three baselines with respect to accuracy. LAPM
performs the best among the baselines.

3.2 Probability Calibration

Accuracy figures cannot fully evaluate a probabilistic model as it does not pro-
vide any insight on how well-calibrated and accurate the output probabilities
are. To evaluate the probability calibration of LinNet we rely on the Brier
score and the reliability curve.

Brier Score In a probabilistic model, its classification accuracy paints only part
of the picture. For example, two models M1 and M2 that both predict lineup
λA will outperform λB will exhibit the same accuracy. However, if PrM1

(λA �
λB) = 0.9 and PrM2

(λA � λB) = 0.55, the two models have different probability
calibration. The latter can be evaluated by calculating the Brier score [3] of each
model, which can essentially be thought of as a cost function. In particular, for
the case of binary probabilistic prediction, the Brier score is calculated as:

β =
1

N

N∑
i=1

(πi − yi)2 (8)

where N is the number of observations, πi is the probability assigned to instance
i being equal to 1 and yi is the actual (binary) value of instance i. The Brier score
takes values between 0 and 1 and as alluded to above evaluates the calibration
of these probabilities, that is, the level of confidence they provide. The lower
the value of β the better calibrated the output probabilities are – recall that
Brier score is essentially a cost function. Continuing on the example above a 0.9
probability is better calibrated compared to a 0.55 probability (when the ground
truth is label 1) and hence, even though M1 and M2 have the same accuracy,
M1 is better calibrated (lower Brier score – 0.01 compared to 0.2025). The Brier
scores for LinNet and the baselines examined are presented in Table 3.

As we can see LinNet exhibits a lower Brier score as compared to the base-
lines. Furthermore, typically the Brier score of a model is compared to a cli-
matology model [9]. A climatology model assigns the same probability to every
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Season Page Rank PAPM LAPM LinNet
2007-08 0.23 0.22 0.22 0.19
2008-09 0.23 0.23 0.22 0.19
2009-10 0.23 0.23 0.21 0.19
2010-11 0.23 0.23 0.22 0.19
2011-12 0.23 0.22 0.21 0.18
Table 3. LinNet exhibits better probability calibration compared to the baselines
examined.

observation, which is equal to the fraction of positive labels in the whole dataset,
i.e., a base rate. Therefore, in our case the climatology model assigns a probabil-
ity of 0.5 to each observation. As alluded to above we do not have information
about home and visiting lineup so our model estimates the probability of the
lineup with the smaller ID outperforming the one with the larger ID. Given that
the lineup ID has no impact on this probability the climatology model prob-
ability is 0.5. The Brier score for this reference model is βclimatology = 0.25,
which is of lower quality as compared to LinNet and also slightly worse than
our baselines.

Reliability Curve Finally, we evaluate the accuracy of the probability output
of LinNet by deriving the probability validation curves. In order to compute
the accuracy of the predicted probabilities we would ideally want to have every
matchup played several times. If the favorite lineup were given a 75% proba-
bility of outperforming the opposing lineup, then if the matchup was played
100 times we would expect the favorite to win approximately 75 of them. How-
ever, this is clearly not realistic and hence, in order to evaluate the accuracy
of the probabilities we will use all the matchups in our dataset. In particular,
if the predicted probabilities were accurate, when considering all the matchups
where the favorite was predicted to win with a probability of x%, then the fa-
vorite should have outperformed the opponent in (approximately) x% of these
matchups. Given the continuous nature of the probabilities we quantize them
into groups that cover a 5% probability range. Figure 3 presents the predicted
win probability for the reference lineup (i.e., the lineup with the smaller ID)
on the x-axis, while the y-axis presents how many of these matchups this refer-
ence lineup won. Furthermore, the size of the points represents the number of
instances in each situation. As we can see the validation curve is very close to
the y = x line, which practically means that the predicted probabilities capture
fairly well the actual matchup probabilities. In particular, the linear fit has an
intercept of 0.1 and a slope of 0.85.

3.3 Dimensionality of LinNet

One of the parameters that we must choose for the network embedding, which
forms the core of LinNet is its dimensionality d, i.e., how long is the vector
representation of each lineup/node in G. In all of our experiments above we have
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Fig. 3. The LinNet probability validation curve is very close to the y = x
line, translating to fairly accurate probability estimations (for d = 128).

used a dimensionality of d = 128. However, we have experimented with differ-
ent embedding dimensionality values and the accuracy results4 are presented in
Figure 4. As we can see, low dimensionality does not provide any significant
benefits with respect to the accuracy of the model over the baselines. Increasing
the dimensionality further, improves the model performance. However, for values
higher than d = 128 we see a plateau in the performance. In fact, we even see
a slight decrease for dimensionality greater than 128. Higher dimensions lead to
solutions that might not be as robust, since there are many more variables to
optimize for the same amount of data. This can also lead to overfitting, which
consequently degrades the out-of-sample performance.

3.4 Season Win-Loss Record and Lineup Performance

How well can lineup ratings obtained from LinNet explain the win-loss record
of a team? One should expect that there is a correlation between LinNet lineup
ratings and the record of a team - which as we will see indeed is the case.
However, this correlation should not be expected to be perfect, since it relies
also on coaching decisions as well as availability of the lineups (e.g., a lineup can
be unavailable due to injuries). In order to examine this we focus on lineups that

4 The Brier score exhibits similar qualitatively behavior but the differences are much
smaller compared to the model accuracy and hence, we omit their presentation.
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Fig. 4. The choice of d = 128 for the embedding dimensionality of LinNet
provides a good tradeoff between accuracy and (computational) complexity.

played for a total of more than a game (i.e., 48 minutes) during the season. Let
pλi be the average probability of lineup λi (of team τ) to outperform each of the
opponent’s lineups. I.e.,

pλi =

∑
λj∈L\Lτ Pr(λi � λj)

|L \ Lτ |
(9)

where Lτ is the set of all lineups of team τ and L is the set of all league lineups.
Then the LinNet team rating of team τ is:

r(τ) =

∑
λi∈Lτ

γi · pλi∑
λi∈Lτ

γi
(10)

where γi is the total time lineup λi has been on the court over the whole season.
Our results are presented in Figure 5. The linear regression fit has a statistically
significant slope (p-value < 0.001), which translates to a statistically important
relationship. However, as we can see there are outliers in this relationship, such
as the 2008-09 Cavaliers and the 2011-12 Nets. The linear relationship explains
27% of the variability at the win-loss records of the teams. This might be ei-
ther because teams do not choose (due to various reasons) their best lineup to
matchup with the opponent, or because the time that a lineup is on court is
important for its performance (we discuss this in the following section), some-
thing that LinNet currently does not account for (see Section 4). Overall, the
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correlation coefficient between the LinNet team rating and the win-loss record
is moderate adn equal to 0.53 (p-value < 0.0001).

Fig. 5. The team ratings we obtain from LinNet explain 27% of the win-loss
variability of teams.

4 Discussion and Conclusions

In this work, we presented LinNet, a network embedding approach for evaluat-
ing lineups. Our evaluations indicate that the probability output from LinNet
is well calibrated and more accurate than traditional lineup evaluation meth-
ods. More importantly, while we have evaluated LinNet using basketball lineup
data, the proposed method is sport-agnostic and not specific to basketball, i.e.,
there are no basketball-related features used. In particular, LinNet can be used
to evaluate lineups in other sports as long as they involve frequent substitu-
tions (e.g., hockey, volleyball etc.) and an appropriate performance metric is
defined. Furthermore, it can also be used for evaluating and rating teams, as
well as, predicting future games. In this case network G will capture the win-loss
relationships between teams rather than lineups.

However, there are still open issues with the design of LinNet. More specif-
ically, a matchup between lineups might last only for a few minutes (or even
just a couple of possessions). This creates a reliability issue with any prediction
that one tries to perform with similar information. Even though we adjust the
performance margin on a per minute basis, it is not clear that a lineup can keep
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up its performance over a larger time span. It is a very plausible hypothesis that
a lineup has its own skill curve, similar to the players’ skill curves introduced
by Dean Oliver [11]. Other contextual factors can also impact the performance
of a lineup (e.g., foul troubles, current score differential etc.) that we have not
accounted for. However, note that these issues exist with every lineup evalua-
tion metric and to the best of our knowledge they have not been addressed. In
addition, the limited temporal observation that we might have for some stints
can lead to unreliable labeling for the Bradley-Terry model. More specifically,
if lineup λA outperformed lineup λB by 1 point during a stint of a total of 90
seconds, is it correct to declare that λA outperformed λB (for training and eval-
uating our model)? In fact, as one might have expected there is a significant,
moderate, correlation of 0.44 (p-value < 0.01) between the matchup temporal
length and the final point margin observed. How can we incorporate this label
uncertainty in our model? To answer these questions we plan to explore the
concept of fuzzy classification as part of our future work, where the category
membership function will integrate the temporal dimension. The latter might
also require the extension of the model from binary classification to multi-class
classification, where we have a third class corresponding to the two lineups being
equally matched.

Furthermore, currently for lineups that we have not seen before we use as
its latent features a weighted average of already seen lineups, weighted based on
their similarity in the players’ space. Nevertheless, there are other approaches
that one might use for this task that could potentially provide even better results.
For example, a regression model (similar to the one used for calculating the
adjusted plus/minus) can be used to infer the latent features based on the players
in the lineup.

Finally, currently LinNet utilizes a generic network embedding framework
from the network science literature (i.e., node2vec), with a number of parameters
that need to be tuned and optimized5. However, optimizing the neighborhood
objective that node2vec does might not be the most appropriate objective for
evaluating lineups. Thus, a task-specific embedding might perform better than
a generic framework. For example, one of the problems in ranking sports teams
(and lineups) is the several intransitivity relationships (e.g., lineup λA outper-
forms lineup λB , lineup λB outperforms lineup λC , but lineup λC outperformed
lineup λA). These relationships manifest themselves as triangles in the matchup
network. An objective function that incorporates these cycles might be more
appropriate. Moreover, modeling the point performance margin between two
lineups is also of interest, since in many cases a lineup needs to outscore its
opponent more than just one point in order for the team to win or obtain the
lead. All these are promising directions for future research on the usage of net-
work science and representation learning for basketball analytics in general, and
on evaluating lineups in particular. Despite these open issues, we firmly believe
that our current study makes a solid contribution in the problem of evaluating

5 In the current version parameters p, and q, as well as, the size and number of random
walks have not been necessarily optimally chosen.
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lineups and a strong case for the use of network science methods and tools in
the field of sports analytics in general.
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